The United States Medical Licensing Examination® (USMLE®) is a joint program of the Federation of State Medical Boards (FSMB) and National Board of Medical Examiners® (NBME®). United States Medical Licensing Examination, USMLE, National Board of Medical Examiners, and NBME are registered trademarks of the National Board of Medical Examiners. The National Board of Medical Examiners does not sponsor, endorse, or support Becker Professional Education in any manner.
Table of Contents

Volume 1: Basic Pathology

Unit 1 General Principles of Pathology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Cellular Pathophysiology</td>
<td>1-1</td>
</tr>
<tr>
<td>1</td>
<td>Overview of Cellular Pathophysiology</td>
<td>1-1</td>
</tr>
<tr>
<td>2</td>
<td>Tissue Hypoxia</td>
<td>1-2</td>
</tr>
<tr>
<td>3</td>
<td>Free Radical Cell Injury</td>
<td>1-20</td>
</tr>
<tr>
<td>4</td>
<td>Cellular Accumulations and Reversible Changes</td>
<td>1-23</td>
</tr>
<tr>
<td>5</td>
<td>Cellular Responses to Stress</td>
<td>1-26</td>
</tr>
<tr>
<td>6</td>
<td>Cell Death (Necrosis)</td>
<td>1-30</td>
</tr>
<tr>
<td>7</td>
<td>Apoptosis</td>
<td>1-34</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>The Inflammatory Reaction</td>
<td>2-1</td>
</tr>
<tr>
<td>1</td>
<td>Overview of Inflammation</td>
<td>2-1</td>
</tr>
<tr>
<td>2</td>
<td>The Process of Acute Inflammation</td>
<td>2-4</td>
</tr>
<tr>
<td>3</td>
<td>Chronic Inflammation</td>
<td>2-14</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Tissue Repair and Wound Healing</td>
<td>3-1</td>
</tr>
<tr>
<td>1</td>
<td>Overview of Regeneration and Repair</td>
<td>3-1</td>
</tr>
<tr>
<td>2</td>
<td>Repair by Regeneration</td>
<td>3-1</td>
</tr>
<tr>
<td>3</td>
<td>Types of Wound Healing</td>
<td>3-4</td>
</tr>
<tr>
<td>4</td>
<td>Extracellular Matrix</td>
<td>3-6</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Hemodynamics</td>
<td>4-1</td>
</tr>
<tr>
<td>1</td>
<td>Normal Vascular Hemostasis</td>
<td>4-1</td>
</tr>
<tr>
<td>2</td>
<td>Hemodynamic Dysfunction</td>
<td>4-3</td>
</tr>
<tr>
<td>3</td>
<td>Diseases of Hypercoagulability</td>
<td>4-10</td>
</tr>
<tr>
<td>4</td>
<td>Thrombosis</td>
<td>4-12</td>
</tr>
<tr>
<td>5</td>
<td>Embolism</td>
<td>4-13</td>
</tr>
<tr>
<td>6</td>
<td>Infarction</td>
<td>4-14</td>
</tr>
<tr>
<td>7</td>
<td>Hyperemia, Congestion, and Edema</td>
<td>4-15</td>
</tr>
<tr>
<td>8</td>
<td>Shock</td>
<td>4-17</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Neoplasia</td>
<td>5-1</td>
</tr>
<tr>
<td>1</td>
<td>Types of Neoplasms</td>
<td>5-1</td>
</tr>
<tr>
<td>2</td>
<td>Mechanisms of Carcinogenesis</td>
<td>5-4</td>
</tr>
<tr>
<td>3</td>
<td>Cancer Epidemiology</td>
<td>5-15</td>
</tr>
</tbody>
</table>
Table of Contents

Pathology

4 Diagnosis of Cancer ... 5-16
5 Paraneoplastic Syndromes ... 5-17
6 Cancer Prevention ... 5-18

Unit 2 Hematology

Chapter 6 Red Blood Cell Pathology 6-1
1 Red Blood Cells ... 6-1
2 Anemia .. 6-4
3 Microcytic Anemias ... 6-6
4 Macrocytic Anemias ... 6-15
5 Normocytic Anemia .. 6-19
6 Myelofibrosis .. 6-30
7 Polycythemia .. 6-31

Chapter 7 White Blood Cell Pathology 7-1
1 Blood Cell Differentiation ... 7-1
2 Review of Morphology ... 7-2
3 Quantitative Disorders ... 7-3
4 Leukemias ... 7-6

Chapter 8 Lymphoid Pathology .. 8-1
1 Lymphoid Pathology Overview .. 8-1
2 Lymph Nodes .. 8-9
3 Spleen .. 8-9
4 Thymus .. 8-10
5 Plasma Cell Neoplasms ... 8-11

Chapter 9 Immunohematology .. 9-1
1 ABO Blood Group Antigens ... 9-1
2 Determining the ABO Group .. 9-2
3 Rh Antigen and Non-Rh Antigen Systems 9-3
4 Patient Crossmatch ... 9-5
5 Transfusion Reactions .. 9-6
6 Hemolytic Disease of the Newborn (HDN) 9-7
Table of Contents

Volume 2: Systemic Pathology

Unit 3 Cardiovascular Pathology

Chapter 10 Cardiovascular Disorders

1. Heart Failure ... 10-1
2. Ischemic Heart Disease 10-8
3. Cardiomyopathy ... 10-15
4. Valvular Heart Disease 10-17
5. Endocarditis ... 10-21
6. Congenital Heart Disease 10-25
7. Myocardial and Pericardial Disease 10-33

Chapter 11 Cardiovascular Pathology

1. Hypertension .. 11-1
2. Arteriosclerosis .. 11-3
3. Hyperlipoproteinemia 11-6
4. Aneurysms .. 11-9
5. Benign Vascular Tumors 11-11
6. Malignant Vascular Tumors 11-13
7. Vasculitis ... 11-14

Unit 4 Respiratory Pathology

Chapter 12 Pulmonary Pathology

1. Basics of the Pulmonary System 12-1
2. Pulmonary Function Tests 12-2
3. Atelectasis ... 12-3
4. Chronic Obstructive Lung Disease (COPD) 12-5
5. Restrictive Lung Disease 12-9
6. Pulmonary Vascular Disease 12-13
7. Lung Cancer ... 12-19
Table of Contents

Unit 5 Renal Pathology

Chapter 13 Renal Pathology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the Renal System</td>
<td>13-1</td>
</tr>
<tr>
<td>Renal Functional Anatomy</td>
<td>13-3</td>
</tr>
<tr>
<td>Renal Pathology</td>
<td>13-11</td>
</tr>
<tr>
<td>Glomerular Disease</td>
<td>13-14</td>
</tr>
<tr>
<td>Diseases Affecting Tubules and Interstitium</td>
<td>13-25</td>
</tr>
<tr>
<td>Infection</td>
<td>13-28</td>
</tr>
<tr>
<td>Vascular Disease</td>
<td>13-29</td>
</tr>
<tr>
<td>Urinary Tract Obstruction</td>
<td>13-31</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>13-33</td>
</tr>
<tr>
<td>Tumors of the Kidney</td>
<td>13-34</td>
</tr>
<tr>
<td>Lower Urinary Tract Pathology</td>
<td>13-35</td>
</tr>
</tbody>
</table>

Unit 6 Gastrointestinal Pathology

Chapter 14 Gastrointestinal (GI) Pathology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal (GI) Pathology Overview</td>
<td>14-1</td>
</tr>
<tr>
<td>Oral Cavity</td>
<td>14-1</td>
</tr>
<tr>
<td>Esophagus</td>
<td>14-2</td>
</tr>
<tr>
<td>Gastric Diseases</td>
<td>14-6</td>
</tr>
<tr>
<td>Acute Erosive (Hemorrhagic) Gastritis</td>
<td>14-8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>14-16</td>
</tr>
<tr>
<td>Malabsorption Syndromes</td>
<td>14-22</td>
</tr>
<tr>
<td>Appendicitis</td>
<td>14-23</td>
</tr>
<tr>
<td>Inflammatory Bowel Disease</td>
<td>14-24</td>
</tr>
<tr>
<td>Hemorrhoids—Two Types</td>
<td>14-25</td>
</tr>
<tr>
<td>Small and Large Bowel Polyps</td>
<td>14-26</td>
</tr>
<tr>
<td>Intestinal Neoplasia</td>
<td>14-27</td>
</tr>
</tbody>
</table>

Unit 7 Hepatobiliary Pathology/Pancreas

Chapter 15 Hepatobiliary Pathology

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic and Biliary Pathology</td>
<td>15-1</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>15-5</td>
</tr>
<tr>
<td>Cholestatic Diseases</td>
<td>15-9</td>
</tr>
</tbody>
</table>

© DeVry/Becker Educational Development Corp. All rights reserved.
Table of Contents

Pathology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Hepatic Inflammatory Diseases</td>
<td>15-12</td>
</tr>
<tr>
<td>5</td>
<td>Metabolic Liver Diseases</td>
<td>15-16</td>
</tr>
<tr>
<td>6</td>
<td>Hepatic Vascular Diseases</td>
<td>15-18</td>
</tr>
<tr>
<td>7</td>
<td>Hepatic Neoplastic Diseases</td>
<td>15-19</td>
</tr>
</tbody>
</table>

Chapter 16 Pancreatic Pathology

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Congenital Disorders</td>
<td>16-1</td>
</tr>
<tr>
<td>2 Inflammation</td>
<td>16-2</td>
</tr>
<tr>
<td>3 Neoplastic Disorders</td>
<td>16-5</td>
</tr>
</tbody>
</table>

Unit 8 Reproductive Pathology

Chapter 17 Male Reproductive Pathology

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Congenital Abnormalities</td>
<td>17-1</td>
</tr>
<tr>
<td>2 Penile Pathology</td>
<td>17-2</td>
</tr>
<tr>
<td>3 Abnormalities of the Testes, Epididymis, and Scrotal Sac</td>
<td>17-4</td>
</tr>
<tr>
<td>4 Testicular Tumors—Major Categories</td>
<td>17-6</td>
</tr>
<tr>
<td>5 Prostate</td>
<td>17-8</td>
</tr>
<tr>
<td>6 Common Male Chromosomal Abnormalities</td>
<td>17-11</td>
</tr>
</tbody>
</table>

Chapter 18 Female Reproductive Pathology

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Vulva Disorders</td>
<td>18-1</td>
</tr>
<tr>
<td>2 Vaginal Disorders</td>
<td>18-2</td>
</tr>
<tr>
<td>3 Cervical Disorders</td>
<td>18-3</td>
</tr>
<tr>
<td>4 Reproductive Physiology</td>
<td>18-5</td>
</tr>
<tr>
<td>5 Effects of Pregnancy</td>
<td>18-11</td>
</tr>
<tr>
<td>6 Menopause</td>
<td>18-11</td>
</tr>
<tr>
<td>7 Hirsutism and Virilization</td>
<td>18-12</td>
</tr>
<tr>
<td>8 Menstrual Dysfunction</td>
<td>18-14</td>
</tr>
<tr>
<td>9 Uterine Disorders</td>
<td>18-17</td>
</tr>
<tr>
<td>10 Fallopian Tube Disorders</td>
<td>18-20</td>
</tr>
<tr>
<td>11 Ovarian Disorders</td>
<td>18-21</td>
</tr>
<tr>
<td>12 Gestational Disorders</td>
<td>18-23</td>
</tr>
<tr>
<td>13 Sexually Transmitted Diseases and Genital Infections</td>
<td>18-27</td>
</tr>
<tr>
<td>14 Breast Anatomy</td>
<td>18-31</td>
</tr>
<tr>
<td>15 Nipple Discharge</td>
<td>18-32</td>
</tr>
</tbody>
</table>
Table of Contents

Pathology

16 Fibrocystic Change ... 18-33
17 Benign Breast Tumors .. 18-34
18 Types of Breast Cancer .. 18-35

Unit 9 Endocrine Pathology

Chapter 19 Endocrine Pathology ... 19-1
1 Overview of Pathology ... 19-1
2 The Hypothalamus and Pituitary .. 19-3
3 The Hypothalamus and Pituitary: Anterior Pituitary 19-5
4 The Hypothalamus and Pituitary: Thyroid Hormone 19-10
5 The Hypothalamus and Pituitary: Adrenals 19-21
6 Endocrine Pancreas ... 19-33
7 Calcium Metabolism and Bone ... 19-47

Unit 10 Nervous Pathology

Chapter 20 Central Nervous System Pathology 20-1
1 Basic Neuroanatomy ... 20-1
2 Central Nervous System Developmental Diseases 20-3
3 Cerebral Herniation ... 20-9
4 Cranial Pressure Abnormalities .. 20-10
5 Head Trauma .. 20-12
6 Spinal Cord Lesions ... 20-15
7 Cerebrovascular Disease ... 20-21
8 Infectious Diseases ... 20-31
9 Degenerative Diseases .. 20-39
10 Central Nervous Tumors ... 20-43

Chapter 21 Peripheral Nervous System Pathology 21-1
1 Inflammatory Neuropathy ... 21-1
2 Hereditary Neuropathy ... 21-2
Table of Contents

Pathology

Chapter 22 Optic Pathology
- 1. Anatomy of the Eye .. 22-1
- 2. Congenital Abnormalities 22-2
- 3. Eyelid Disorders .. 22-3
- 4. Conjunctival Disorders 22-4
- 5. Disorders of the Uvea 22-6
- 6. Retinal Disorders ... 22-7
- 7. Macular Degeneration 22-10
- 8. Ocular Melanoma ... 22-11
- 9. Glaucoma ... 22-12

Unit 11 Musculoskeleton and Connective Tissue Disorders

Chapter 23 Connective Tissue Disorders
- 1. Types of Connective Tissue Disorders 23-1

Chapter 24 Joint Pathology
- 1. Classification of Joint Pathologies 24-1
- 2. Noninflammatory Arthritis 24-2
- 3. Inflammatory Arthritis 24-5
- 4. Arthritis of Metabolic Origin 24-12
- 5. Septic Arthritis ... 24-15
- 6. Joint Tumors ... 24-16

Chapter 25 Bone Pathology
- 1. The Skeleton .. 25-1
- 2. Congenital Bone Disease 25-4
- 3. Metabolic and Acquired Bone Disease 25-6
- 4. Trauma .. 25-13
- 5. Infection .. 25-16
- 6. Bone-Forming Tumors 25-18
- 7. Cartilage-Forming Tumors 25-20
- 8. Fibrous and Other Tumors 25-21
- 9. Metastatic Diseases .. 25-22
Chapter 26: Muscle Pathology

1. Classification of Muscle Fiber Type and Innervation .. 26-1
2. Muscular Dystrophies ... 26-3
3. Diseases of the Neuromuscular Junction .. 26-7

Chapter 27: Soft Tissue Pathology

1. Overview of Connective Tissue Tumors .. 27-1
2. Tumors of Fat Tissue ... 27-2
3. Tumors of Fibroblasts .. 27-3
4. Tumors of Muscle ... 27-3

Unit 12: Dermatology

Chapter 28: Dermatopathology

1. Overview and Terminology ... 28-1
2. Infectious Diseases .. 28-3
3. Inflammatory Dermatopathology ... 28-10
4. Neoplastic Diseases ... 28-14
Pathology

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5.2</td>
<td>Hypertrophy</td>
<td>1-27</td>
</tr>
<tr>
<td>1-5.3</td>
<td>Cerebral Atrophy</td>
<td>1-28</td>
</tr>
<tr>
<td>1-5.4</td>
<td>Glandular Metaplasia in Barrett Esophagus</td>
<td>1-29</td>
</tr>
<tr>
<td>1-6.1A</td>
<td>Coagulative Necrosis: Dry Gangrene Caused by Diabetes</td>
<td>1-30</td>
</tr>
<tr>
<td>1-6.1B</td>
<td>Coagulative Necrosis</td>
<td>1-30</td>
</tr>
<tr>
<td>1-6.1C</td>
<td>Myocardial Infarction</td>
<td>1-31</td>
</tr>
<tr>
<td>1-6.2</td>
<td>Liquefactive Necrosis: Cystic Cavity in the Brain</td>
<td>1-31</td>
</tr>
<tr>
<td>1-6.3A</td>
<td>Caseous Necrosis: Macroscopic Morphology</td>
<td>1-32</td>
</tr>
<tr>
<td>1-6.3B</td>
<td>Caseous Necrosis: Microscopic Morphology</td>
<td>1-32</td>
</tr>
<tr>
<td>1-6.5</td>
<td>Enzymatic Fat Necrosis of Pancreas With Saponification</td>
<td>1-33</td>
</tr>
<tr>
<td>1-7.3A</td>
<td>Pathways of Apoptosis</td>
<td>1-35</td>
</tr>
<tr>
<td>1-7.3B</td>
<td>Apoptotic Body</td>
<td>1-36</td>
</tr>
</tbody>
</table>

Chapter 2 The Inflammatory Reaction

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1.2A</td>
<td>Mast Cell</td>
<td>2-2</td>
</tr>
<tr>
<td>2-1.2B</td>
<td>Basophil</td>
<td>2-2</td>
</tr>
<tr>
<td>2-1.2C</td>
<td>Neutrophil</td>
<td>2-2</td>
</tr>
<tr>
<td>2-1.2D</td>
<td>Monocyte</td>
<td>2-2</td>
</tr>
<tr>
<td>2-1.2E</td>
<td>Macrophage</td>
<td>2-2</td>
</tr>
<tr>
<td>2-1.2F</td>
<td>Lymphocyte</td>
<td>2-3</td>
</tr>
<tr>
<td>2-1.2G</td>
<td>Plasma Cell</td>
<td>2-3</td>
</tr>
<tr>
<td>2-1.2H</td>
<td>Eosinophil</td>
<td>2-3</td>
</tr>
<tr>
<td>2-2.1</td>
<td>Steps of Leukocyte Extravasation</td>
<td>2-6</td>
</tr>
<tr>
<td>2-2.2</td>
<td>Mechanisms of Intracellular Killing</td>
<td>2-7</td>
</tr>
<tr>
<td>2-2.3A</td>
<td>Arachidonic Acid Cascade</td>
<td>2-8</td>
</tr>
<tr>
<td>2-2.3B</td>
<td>Complement Split Products</td>
<td>2-10</td>
</tr>
<tr>
<td>2-2.3C</td>
<td>Clotting Cascade</td>
<td>2-11</td>
</tr>
<tr>
<td>2-2.4A</td>
<td>Intracellular Killing in CGD</td>
<td>2-13</td>
</tr>
<tr>
<td>2-2.4B</td>
<td>Phagocyte in CHS</td>
<td>2-13</td>
</tr>
</tbody>
</table>

Chapter 3 Tissue Repair and Wound Healing

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-2.1</td>
<td>Cell Cycle</td>
<td>3-1</td>
</tr>
<tr>
<td>3-2.2</td>
<td>Growth and Regeneration Signals</td>
<td>3-2</td>
</tr>
<tr>
<td>3-3.1</td>
<td>Healing by Primary Intention</td>
<td>3-4</td>
</tr>
<tr>
<td>3-3.2</td>
<td>Healing by Secondary Intention</td>
<td>3-5</td>
</tr>
<tr>
<td>3-4.0</td>
<td>Extracellular Matrix: Collagen</td>
<td>3-6</td>
</tr>
</tbody>
</table>
Chapter 4 Hemodynamics

Figure 4-1.1 Thrombotic Hemostasis .. 4-1
Figure 4-1.2 Antithrombotic Activities of Endothelial Cells 4-2
Figure 4-2.1A Thrombogenesis .. 4-3
Figure 4-2.1B Platelet Adhesion ... 4-4
Figure 4-2.1C Primary Hemostasis .. 4-5
Figure 4-2.1D Aggregation .. 4-5
Figure 4-2.1E Primary Hemostasis .. 4-6
Figure 4-2.1F Coagulation Cascade ... 4-6
Figure 4-2.1G Extrinsic and Intrinsic Pathways 4-7
Figure 4-4.2 Arterial Thrombus .. 4-12
Figure 4-5.1 Saddle Embolus ... 4-13
Figure 4-6.1 Red Infarction ... 4-14
Figure 4-7.1 Hyperemia .. 4-15
Figure 4-7.2A Congestion ... 4-15
Figure 4-7.2B Centrilobular Necrosis Resulting From Congestive Heart Failure 4-16
Figure 4-8.1 Fick Equation .. 4-17
Figure 4-8.2 Septic Shock .. 4-18

Chapter 5 Neoplasia

Figure 5-1.3A Tubular Adenoma .. 5-2
Figure 5-1.3B Teratoma ... 5-2
Figure 5-1.3C Hamartoma ... 5-3
Figure 5-2.0 Carcinogenesis ... 5-4
Figure 5-2.2A Chromosomal Translocation 5-6
Figure 5-2.2B Mechanism of RAS Carcinogenesis 5-7
Figure 5-2.2C Oncogenesis .. 5-9
Figure 5-2.3A Pathogenesis of Retinoblastoma 5-10
Figure 5-2.3B Pathogenesis of Familial Adenomatous Polyposis 5-11
Figure 5-2.8A Metastasis ... 5-13
Figure 5-2.8B Radiograph of Metastasis 5-14
Figure 5-4.4 Clinical Basis for Staging Cancer 5-16
Chapter 6 Red Blood Cell Pathology

Figure 6-1.3A Reticulocyte .. 6-2
Figure 6-1.3B Inaccurate Estimate of Reticulocytosis 6-2
Figure 6-1.3C Erythropoiesis: Hair-on-End Appearance. 6-3
Figure 6-2.1A Types of Anemia ... 6-4
Figure 6-2.1B Normal Iron Labs ... 6-5
Figure 6-3.1A Iron Deficiency ... 6-6
Figure 6-3.1B Koilonychia ... 6-6
Figure 6-3.1C Red Blood Cell Distribution Width (RDW) 6-6
Figure 6-3.1D Glossitis Seen With Iron-Deficiency Anemia 6-7
Figure 6-3.1E Anemia of Chronic Disease: Laboratory Findings 6-7
Figure 6-3.1F Porphyria Pathway ... 6-8
Figure 6-3.1G Heme Synthesis, Porphyrias, and Lead Poisoning 6-9
Figure 6-3.1H Ringed Sideroblasts .. 6-10
Figure 6-3.1I Basophilic Stippling .. 6-10
Figure 6-3.1J Iron Overload: Sideroblastic Anemia 6-10
Figure 6-3.2A Hydrops Fetalis ... 6-11
Figure 6-3.2B α-Thalassemia Trait .. 6-12
Figure 6-3.2C Splicing Patterns ... 6-12
Figure 6-3.2D Peripheral Blood Smear 6-13
Figure 6-3.2E Normal HbE ... 6-13
Figure 6-3.2F α-Thalassemia Trait .. 6-13
Figure 6-3.2G HbE of β-Thalassemia Minor 6-14
Figure 6-4.2 Biochemical Pathways of Folate and Vitamin B12 6-16
Figure 6-4.3 Megaloblast ... 6-17
Figure 6-4.4 Schilling Test ... 6-18
Figure 6-5.1 Normocytic Anemias ... 6-19
Figure 6-5.2A Corrected Reticulocyte Count 6-20
Figure 6-5.2B Normal Bone Marrow .. 6-21
Figure 6-5.2C Fibrosed Bone Marrow Secondary to Breast Cancer Metastasis 6-21
Figure 6-5.3A Extravascular Hemolysis 6-21
Figure 6-5.3B Reticulocyte Count of >3% 6-22
Figure 6-5.3C Spherocytes ... 6-22
Pathology

Figure 6-5.3D Sickling of Red Blood Cell 6-23
Figure 6-5.3E Howell-Jolly Bodies 6-24
Figure 6-5.3F Sickle Cell Trait vs. Sickle Cell Disease 6-25
Figure 6-5.3G Heinz Bodies ... 6-26
Figure 6-5.3H Role of Pyruvate Kinase in Glycolysis 6-26
Figure 6-5.3I Aortic Stenosis ... 6-27
Figure 6-5.3J WAIHA: Role of Penicillin and \(\alpha \)-Methyldopa 6-27
Figure 6-5.3K CAIHA: Role of Quinidine 6-28
Figure 6-7.4 Polycythemia .. 6-31
Figure 6-7.5 Polycythemia Vera Bone Marrow 6-32

Chapter 7 White Blood Cell Pathology

Figure 7-1.0 Blood Cell Differentiation 7-1
Figure 7-2.1A White Blood Cells ... 7-2
Figure 7-3.1A Leukoerythroblastic 7-3
Figure 7-3.1B Atypical Lymphocytes 7-4
Figure 7-4.0 Classification of Leukemias 7-6
Figure 7-4.1A Acute Lymphocytic Leukemia (ALL) 7-7
Figure 7-4.1B Acute Myeloid Leukemia (AML) 7-9
Figure 7-4.2A Chronic Lymphoid Leukemia 7-10
Figure 7-4.2B The Philadelphia Chromosome 7-11
Figure 7-4.2C Chronic Myelogenous Leukemia 7-12
Figure 7-4.2D Hairy Cell Leukemia ... 7-13

Chapter 8 Lymphoid Pathology

Figure 8-2.1A Normal Lymph Node 8-1
Figure 8-2.1B Birbeck Granules ... 8-1
Figure 8-2.4 Hodgkin Lymphoma .. 8-4
Figure 8-2.5A Non-Hodgkin Lymphoma/Follicular Lymphoma 8-6
Figure 8-2.5B Non-Hodgkin Lymphoma/Diffuse Large B Cell Lymphoma .. 8-6
Figure 8-2.5C Non-Hodgkin Lymphoma/Burkitt Lymphoma 8-7
Figure 8-2.5D Non-Hodgkin Lymphoma/Burkitt Lymphoma 8-7
Figure 8-5.1A Multiple Myeloma .. 8-11
Figure 8-5.1B Special Staining of CD138 8-12
Chapter 9 Immunohematology

Figure 9-1.5 Parents' Blood Types .. 9-1
Figure 9-2.2 Determining ABO Group ... 9-2
Figure 9-3.1 C, D, E Antigens ... 9-3
Figure 9-6.1 ABO HDN ... 9-7
Figure 9-6.2 Kernicterus ... 9-8

Chapter 10 Cardiovascular Disorders

Figure 10-1.1A Left-Sided Heart Failure, Microscopic 10-2
Figure 10-1.1B Left-Sided Heart Failure Forward Failure 10-3
Figure 10-1.1C Left-Sided Heart Failure ... 10-3
Figure 10-1.1D Pulmonary Capillary Wedge Pressure (PCWP) 10-4
Figure 10-1.1E Cardiovascular Function Curves: CHF 10-5
Figure 10-1.2A Jugular Vein Pulse ... 10-6
Figure 10-1.2B Right-Sided Heart Failure .. 10-7
Figure 10-1.2C Right Atrial Tracing .. 10-7
Figure 10-2.2A Ischemic Heart Disease: Stable Angina 10-8
Figure 10-2.2B Ischemic Heart Disease: Variant (Prinzmetal) Angina 10-9
Figure 10-2.2C Ischemic Heart Disease: Myocardial Infarction 10-10
Figure 10-2.2D Ischemic Heart Disease: Myocardial Infarction 10-10
Figure 10-2.2E Ischemic Heart Disease: Myocardial Infarction 10-11
Figure 10-2.2F Coronary Arteries ... 10-11
Figure 10-2.2G Ischemic Heart Disease: Myocardial Infarction
 Morphology—Day 1 .. 10-12
Figure 10-2.2H Ischemic Heart Disease: Myocardial Infarction
 Morphology—Day 7 .. 10-12
Figure 10-2.2I CK-MB Required to Dx Reinfarction Because Troponins
 Are Increased Over a Week .. 10-13
Figure 10-2.2J Ischemic Heart Disease: Myocardial Infarction 10-13
Figure 10-2.2K Fibrinous Pericarditis Ventricular Aneurysm 10-14
Figure 10-3.1 Dilated Cardiomyopathy ... 10-15
Figure 10-3.2 Hypertrophic Cardiomyopathy 10-16
Figure 10-4.1A Aortic Stenosis .. 10-17
Table of Contents

Pathology

Figure 11-3.1 Hyperlipoproteinemia .. 11-7
Figure 11-3.2 Xanthelasma ... 11-7
Figure 11-3.3 Type III Hyperlipoproteinemia 11-8
Figure 11-3.4 Types III and IV Hyperlipoproteinemia 11-8
Figure 11-4.1 Aneurysms .. 11-9
Figure 11-4.2 Cystic Medial Necrosis .. 11-10
Figure 11-5.1A Spider Telangiectasia .. 11-11
Figure 11-5.1B Hereditary Telangiectasia .. 11-11
Figure 11-5.2 Capillary Hemangioma .. 11-12
Figure 11-5.3 Sturge-Weber Syndrome .. 11-12
Figure 11-6.1 Kaposi Sarcoma ... 11-13
Figure 11-7.2 Takayasu Arteritis .. 11-16
Figure 11-7.3A Kawasaki Disease ... 11-17
Figure 11-7.3B Polyarteritis Nodosa .. 11-17
Figure 11-7.4 Wegener Granulomatosis .. 11-18
Figure 11-7.5A Henoch-Schönlein Purpura .. 11-19
Figure 11-7.5B Behçet Disease .. 11-19
Figure 11-7.6A Buerger Disease .. 11-20
Figure 11-7.6B Raynaud Phenomenon ... 11-20

Chapter 12 Pulmonary Pathology

Figure 12-1.0A Lower Airways .. 12-1
Figure 12-1.0B Conducting Zone and Respiratory Zone 12-1
Figure 12-2.2 Spirometry .. 12-2
Figure 12-3.1 Alveolar Damage .. 12-4
Figure 12-4.1A Centrilobular Emphysema ... 12-5
Figure 12-4.1B Panacinar Emphysema ... 12-6
Figure 12-4.1C Chest X-Ray of Emphysema .. 12-6
Figure 12-4.2 Chronic Bronchitis vs. Emphysema 12-7
Figure 12-4.4 Dilated Bronchi and Bronchioles in Bronchiectasis 12-8
Figure 12-5.1A Anthracotic Depositions .. 12-9
Figure 12-5.1B Silicotic Nodule ... 12-10
Table of Contents

Pathology

Figure 13-4.1A. Immune-Glomerulopathy Patterns 13-14
Figure 13-4.1B. Glomerular Diseases .. 13-15
Figure 13-4.3A. Fatty Casts .. 13-16
Figure 13-4.3B. Normal Glomerulus Light Microscopy 13-16
Figure 13-4.3C. Normal Glomerulus Electron Microscopy 13-16
Figure 13-4.3D. Minimal Change Disease 13-17
Figure 13-4.3E. Light Microscopy of Membranous Glomerulonephritis 13-18
Figure 13-4.3F. Electron Microscopy of Membranous Glomerulonephritis ... 13-18
Figure 13-4.3G. Membranous-Granular Pattern 13-18
Figure 13-4.3H. Diabetic Nephropathy 13-20
Figure 13-4.3I. Renal Amyloid .. 13-20
Figure 13-4.4A. Subepithelial Hump of Post-Streptococcal Glomerulonephritis 13-21
Figure 13-4.4B. IgA in Mesangium .. 13-22
Figure 13-4.5A. Rapidly Progressive Glomerulonephritis 13-23
Figure 13-4.5B. Henoch-Schönlein Purpura 13-24
Figure 13-5.4. Acute Tubular Necrosis 13-25
Figure 13-5.5. Renal Papillary Necrosis with Ring-Sign Necrosis 13-26
Figure 13-6.2A. White Blood Cell Casts 13-28
Figure 13-6.2B. Blunted Calyx .. 13-28
Figure 13-7.1. Fibromuscular Dysplasia of the Renal Artery 13-29
Figure 13-8.1. Hydronephrosis of the Renal Parenchyma 13-31
Figure 13-9.1. Urinalysis Waxy Broadcasts 13-33
Figure 13-10.1. Renal Cell Carcinoma 13-34
Figure 13-10.2. Wilms Tumor .. 13-34

Chapter 14 Gastrointestinal (GI) Pathology

Figure 14-2.2. Peutz-Jeghers Syndrome 14-1
Figure 14-3.1A. Tracheoesophageal Fistula (Pattern C) 14-2
Figure 14-3.1B. Hiatal Hernia .. 14-3
Figure 14-3.2. Esophagus: Normal GEJ and Mucosa 14-4
Figure 14-3.4. Esophageal Varices ... 14-5
Figure 14-3.5. Esophageal Adenocarcinoma 14-5
Figure 14-4.3. Structural/Functional Stomach Diseases 14-7

© DeVry/Becker Educational Development Corp. All rights reserved.
Pathology

Figure 14-5.0 Hemorrhagic Gastritis
Figure 14-5.1 Anatomy of Gastric Blood Supply
Figure 14-5.2A Signet Ring-Type Gastric Adenocarcinoma
Figure 14-5.2B Linitis Plastica
Figure 14-5.3A Duodenal Arteria
Figure 14-5.3B Intussusception
Figure 14-5.3C Volvulus
Figure 14-5.3D Meckel Diverticulum
Figure 14-5.3E Diverticulosis
Figure 14-5.3F Hirschsprung Disease
Figure 14-7.0 Celiac Disease
Figure 14-9.0 Crohn Disease
Figure 14-10.1 Hemorrhoids
Figure 14-11.2 Examples of Neoplastic Polyps
Figure 14-12.1A Duke Stages
Figure 14-12.1B Colorectal Cancer
Figure 14-12.2 Carcinoid Tumors

Chapter 15 Hepatobiliary Pathology

Figure 15-1.0A The Liver
Figure 15-1.0B Bilirubin Metabolism
Figure 15-1.0C Hepatic Handling of Bilirubin
Figure 15-1.1A Prehepatic Jaundice
Figure 15-1.1B Hepatic Jaundice
Figure 15-1.1C Obstructive Liver Disease
Figure 15-2.1A Portal Hypertension
Figure 15-2.1B Ascites
Figure 15-2.3A Manifestations of Cirrhosis
Figure 15-2.3B Cirrhosis
Figure 15-2.3C Histology of Cirrhosis
Figure 15-3.3A Extrahepatic Cholestatic Diseases/Primary Sclerosing Cholangitis
Figure 15-3.3B Extrahepatic Cholestatic Diseases
Table of Contents

Pathology

Figure 15-3.4	Cholestatic Diseases/Dubin-Johnson Syndrome	15-11
Figure 15-4.1A	"Councilman Bodies" in Viral Hepatitis	15-12
Figure 15-4.1B	Hepatitis B Virus Markers	15-13
Figure 15-4.3A	Hepatic Steatosis	15-14
Figure 15-4.3B	Hypoglycemia	15-14
Figure 15-4.3C	Alcoholic Liver Disease	15-15
Figure 15-5.1	Wilson Disease	15-16
Figure 15-5.2	Hemochromatosis	15-16
Figure 15-7.2	Hepatocellular Carcinoma	15-19
Figure 15-7.3A	Gallstones	15-20
Figure 15-7.3B	Cholecystitis	15-21

Chapter 16 Pancreatic Pathology

Figure 16-1.4	Congenital Disorders	16-1
Figure 16-2.1A	Acute Pancreatitis	16-2
Figure 16-2.1B	Pancreatic Pseudocyst	16-3
Figure 16-3.2	Grey Turner and Cullen Signs	16-5

Chapter 17 Male Reproductive Pathology

Figure 17-2.1	Peyronie Disease	17-2
Figure 17-3.2	Testicular Torsion	17-4
Figure 17-3.3	Varicocele	17-5
Figure 17-5.2	Benign Prostatic Hyperplasia (BPH)	17-9
Figure 17-5.3A	Prostate Cancer	17-10
Figure 17-5.3B	Prostate Cancer: Osteoblastic Metastasis to the Vertebrae	17-10
Figure 17-6.1	Klinefelter Syndrome	17-11
Figure 17-6.2	Androgen Insensitivity Syndrome (AIS)	17-12

Chapter 18 Female Reproductive Pathology

Figure 18-1.1	Lichen Sclerosis	18-1
Figure 18-1.2	Paget Disease	18-1
Figure 18-2.2A	Embryonal Rhabdomyosarcoma	18-2
Figure 18-3.1	Koilocytosis in CIN	18-3
Figure 18-3.2	Cervical Cancer	18-4
Figure 19-4.2 . Congenital Thyroid Disease .. 19-11
Figure 19-4.3A . Graves Disease ... 19-12
Figure 19-4.3B . Pretibial Myxedema ... 19-12
Figure 19-4.3C . Graves Exophthalmos .. 19-12
Figure 19-4.3D . Hashimoto Thyroiditis: Hurthle Cells 19-13
Figure 19-4.3E . Work-up for Hyperthyroidism ... 19-14
Figure 19-4.4A . Adult Hyperthyroidism .. 19-15
Figure 19-4.4B . Hypothyroidism: Childhood Cretinism 19-16
Figure 19-4.5A . Benign "Hot" Nodule ... 19-18
Figure 19-4.5B . "Cold" Nodules ... 19-18
Figure 19-4.5C . Approach to Thyroid Nodule .. 19-19
Figure 19-4.5D . Psammoma Bodies ... 19-20
Figure 19-4.5E . Follicular Carcinoma ... 19-20
Figure 19-4.5F . Anaplastic Carcinoma ... 19-20
Figure 19-4.5.1A . Pathways of Steroid Hormones Synthesis 19-21
Figure 19-4.5.2A . Synthesis in Zona Fasciculata and Zona Reticularis 19-23
Figure 19-4.5.2B . Metabolic Actions of Cortisol .. 19-24
Figure 19-4.5.2C . Control of Cortisol Secretion ... 19-24
Figure 19-4.5.2D . Cortisol Secretion and Action 19-25
Figure 19-4.5.3A . Addison Disease .. 19-25
Figure 19-4.5.3B . Waterhouse-Friderichsen Syndrome 19-26
Figure 19-4.5.3C . Adrenal Insufficiency: Hyperpigmentation 19-26
Figure 19-4.5.3D . Metyrapone Test ... 19-26
Figure 19-4.5.3E . Cushing Syndrome .. 19-27
Figure 19-4.5.3F . Cushing Symptoms .. 19-27
Figure 19-4.5.3G . 21β-Hydroxylase Deficiency—Zona Glomerulosa 19-29
Figure 19-4.5.3H . 21β-Hydroxylase Deficiency—Zona Fasciculata, Zona Reticularis ... 19-29
Figure 19-4.5.3I . 11β-Hydroxylase Deficiency—Zona Fasciculata, Zona Reticularis ... 19-30
Figure 19-4.5.3J . 17α-Hydroxylase Deficiency—Zona Fasciculata, Zona Reticularis ... 19-30
Figure 19-4.5.3K . Adrenal Medulla ... 19-31
Figure 19-5.3L. Metabolic Actions of Epinephrine and Norepinephrine. 19-32
Figure 19-6.1A. Pancreatic Islets. 19-33
Figure 19-6.1B. Pancreatic Islet Cell. 19-33
Figure 19-6.1C. Preproinsulin, Proinsulin, and Insulin. 19-34
Figure 19-6.1D. Control of Insulin Secretion. 19-34
Figure 19-6.1E. β Cell Insulin Release. 19-35
Figure 19-6.1F. Peripheral Actions of Insulin. 19-35
Figure 19-6.2A. Insulinoma Histology. 19-36
Figure 19-6.2B. Necrolytic Migratory Erythema. 19-37
Figure 19-6.3A. Diabetes Mellitus: Muscle Wasting and Hyperglycemia. 19-39
Figure 19-6.3B. Diabetes Mellitus: Ketonacidosis and Hypertriglyceridemia. 19-39
Figure 19-6.3C. Insulitis in Type I Diabetes. 19-40
Figure 19-6.3D. Hyalinization of Pancreatic β Cells in Type II Diabetes. 19-41
Figure 19-6.3E. Diabetic Ocular Complication: Cataracts. 19-45
Figure 19-6.3F. Diabetic Ocular Complication: Retinal Detachment. 19-45
Figure 19-6.3G. Kimmelstiel-Wilson Nodule. 19-45
Figure 19-6.3H. Neuropathic Pressure Ulcers. 19-46
Figure 19-6.3I. Acanthosis Nigricans. 19-46
Figure 19-6.3J. Necrobiosis Lipoidica. 19-46
Figure 19-7.1A. Compartmentalization of Ca++ and Free PO_4^2-. 19-47
Figure 19-7.1B. Compartmentalization of Ca++ in the Body. 19-47
Figure 19-7.2. Regulation of ECF Calcium and Phosphate. 19-48

Chapter 20 Central Nervous System Pathology
Figure 20-1.1A. Layers of the Skull. 20-1
Figure 20-1.1B. MRI Sagittal Section of the Brain. 20-2
Figure 20-1.1C. Pyramidal Neurons. 20-2
Figure 20-2.0A."Bleeding" of the Nucleus Pulposus. 20-3
Figure 20-2.0B. Developmental Diseases. 20-3
Figure 20-2.0C. Developmental Diseases of the Central Nervous System. 20-4
Figure 20-2.1A. Anencephaly. 20-4
Figure 20-2.1B. Encephalocele. 20-4
Figure 20-2.1C. Spina Bifida. 20-5
<table>
<thead>
<tr>
<th>Pathology Figures</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 20-2.2A</td>
<td>Arnold-Chiari Type I</td>
</tr>
<tr>
<td>Figure 20-2.2B</td>
<td>Dandy-Walker Malformation</td>
</tr>
<tr>
<td>Figure 20-2.3</td>
<td>Periventricular Leukomalacia</td>
</tr>
<tr>
<td>Figure 20-2.4</td>
<td>Fetal Alcohol Syndrome</td>
</tr>
<tr>
<td>Figure 20-2.5</td>
<td>Holoprosencephaly</td>
</tr>
<tr>
<td>Figure 20-3.3A</td>
<td>Cerebral Herniation</td>
</tr>
<tr>
<td>Figure 20-3.3B</td>
<td>Effects of Uncal and Subfalcine Herniations of the CN III and PCA</td>
</tr>
<tr>
<td>Figure 20-3.4A</td>
<td>Holoprosencephaly</td>
</tr>
<tr>
<td>Figure 20-3.4B</td>
<td>Hydrocephalus</td>
</tr>
<tr>
<td>Figure 20-5.1A</td>
<td>Head Trauma</td>
</tr>
<tr>
<td>Figure 20-5.1B</td>
<td>Diffuse Axonal Injury</td>
</tr>
<tr>
<td>Figure 20-5.2A</td>
<td>Epidural Hematoma: Biconvex Bleed</td>
</tr>
<tr>
<td>Figure 20-5.2B</td>
<td>Subdural Hematoma</td>
</tr>
<tr>
<td>Figure 20-6.0</td>
<td>Spinal Cord and Associated Tracts</td>
</tr>
<tr>
<td>Figure 20-6.2A</td>
<td>Poliomyelitis: Lesion of Anterior Horns</td>
</tr>
<tr>
<td>Figure 20-6.2B</td>
<td>Multiple Sclerosis: Lesion of Anterior Horns</td>
</tr>
<tr>
<td>Figure 20-6.4A</td>
<td>Amyotrophic Lateral Sclerosis</td>
</tr>
<tr>
<td>Figure 20-6.4B</td>
<td>ASA Occlusion Lesions</td>
</tr>
<tr>
<td>Figure 20-6.4C</td>
<td>Artery of Adamkiewicz</td>
</tr>
<tr>
<td>Figure 20-6.5</td>
<td>Tabes Dorsalis</td>
</tr>
<tr>
<td>Figure 20-6.6</td>
<td>Subacute Combined Degeneration</td>
</tr>
<tr>
<td>Figure 20-6.7</td>
<td>Syringomyelia</td>
</tr>
<tr>
<td>Figure 20-6.8</td>
<td>Syringomyelia Lesion</td>
</tr>
<tr>
<td>Figure 20-7.1</td>
<td>Cerebral Edema</td>
</tr>
<tr>
<td>Figure 20-7.4</td>
<td>12 to 48 Hours "Dead Reds"</td>
</tr>
<tr>
<td>Figure 20-7.5A</td>
<td>Acute Watershed Infarcts</td>
</tr>
<tr>
<td>Figure 20-7.5B</td>
<td>Atherosclerotic Stroke</td>
</tr>
<tr>
<td>Figure 20-7.5C</td>
<td>Chronic Right MCA Infarct</td>
</tr>
<tr>
<td>Figure 20-7.5D</td>
<td>Focal Ischemia</td>
</tr>
<tr>
<td>Figure 20-7.5E</td>
<td>Lacunar Infarct</td>
</tr>
<tr>
<td>Figure 20-7.5F</td>
<td>H.I.E. Stroke Imaging</td>
</tr>
<tr>
<td>Figure 20-7.6A</td>
<td>Cerebral Distribution</td>
</tr>
</tbody>
</table>
Figure 20-7.6B Subacute Infarction 20-28
Figure 20-7.6C Transient Ischemic Attacks 20-28
Figure 20-7.7A Hemorrhagic Infarcts: Causes 20-29
Figure 20-7.7B Berry Aneurysms 20-30
Figure 20-7.7C Subarachnoid Hemorrhage 20-30
Figure 20-8.1A Bacterial Meningitis 20-31
Figure 20-8.1B Fungal Meningitis 20-32
Figure 20-8.1C Cryptococci in a Mucinous Background 20-32
Figure 20-8.3A Cytomegalovirus 20-33
Figure 20-8.3B Viral Encephalitis: Rabies 20-34
Figure 20-8.3C Type I Viral Encephalitis 20-35
Figure 20-8.4A Naegleria Fowleri 20-35
Figure 20-8.4B Cerebral Toxoplasmosis 20-36
Figure 20-8.5A Multiple Sclerosis: Demyelination 20-37
Figure 20-8.5B Multiple Sclerosis: Oligoclonal Bands 20-38
Figure 20-8.5C Central Pointe Myelinolysis 20-38
Figure 20-9.1 Cortical Neuritic Plaques 20-39
Figure 20-9.2 Idiopathic Parkinson Disease 20-40
Figure 20-9.3 Huntington Disease 20-41
Figure 20-9.5 Pick Disease Frontotemporal Dementia 20-42
Figure 20-10.2A Pilocytic Astrocytoma 20-43
Figure 20-10.2B Grade II Oligodendroglioma 20-44
Figure 20-10.2C Ependymoma 20-44
Figure 20-10.2D Medulloblastoma 20-45
Figure 20-10.2E Homer-Wright Rosettes 20-45
Figure 20-10.2F Schwannoma 20-46
Figure 20-10.2G Meningioma 20-46
Figure 20-10.2H Craniopharyngioma 20-47

Chapter 21 Peripheral Nervous System Pathology
Figure 21-2.1A Demyelination/Remyelination 21-3
Figure 21-2.1B Pes Cavus 21-4
Chapter 22 Optic Pathology

Figure 22-1.0 Anatomy of the Eye .. 22-1
Figure 22-2.2 Congenital Abnormalities ... 22-2
Figure 22-3.2 Chalazion ... 22-3
Figure 22-4.3 Bacterial, Viral, Allergic Conjunctivitis 22-4
Figure 22-4.4 Pterygium ... 22-5
Figure 22-5.0 Uveitis ... 22-6
Figure 22-6.0 Normal Retina .. 22-7
Figure 22-6.2A Hypertensive Retinopathy 22-8
Figure 22-6.2B Hypertensive Retinopathy 22-8
Figure 22-8.0 Ocular Melanoma ... 22-11
Figure 22-9.1 Ocular Glaucoma ... 22-12

Chapter 23 Connective Tissue Disorders

Figure 23-1.1 Ehlers-Danlos Syndrome .. 23-1
Figure 23-1.2 Keloid ... 23-2
Figure 23-1.3A Marfan Syndrome ... 23-3
Figure 23-1.3B Extracellular Matrix: Elastin 23-4

Chapter 24 Joint Pathology

Figure 24-1.0 Joint Histology .. 24-1
Figure 24-2.1A Osteoarthritis ... 24-2
Figure 24-2.1B Osteoarthritis ... 24-3
Figure 24-2.1C Joint Space Narrowing .. 24-3
Figure 24-2.1D Heberden Nodes in Osteoarthritis 24-3
Figure 24-2.2 Distribution of Primary OA 24-4
Figure 24-3.1A Pannus Formation ... 24-6
Figure 24-3.1B Joints Involved in Rheumatoid Arthritis 24-6
Figure 24-3.1C Nodules .. 24-8
Figure 24-3.1D Arthritis Mutilans .. 24-9
Figure 24-3.1E Clinical Course of RA ... 24-9
Figure 24-3.3A Ankylosing Spondyloarthritis 24-10
Figure 24-3.6 Psoriatic Arthritis ... 24-11
Table of Contents

Pathology

- **Figure 24-4.1A** Uric Acid Synthetic Pathways .. 24-12
- **Figure 24-4.1B** Lab Test for Gout ... 24-13
- **Figure 24-4.1C** Tophi .. 24-13
- **Figure 24-4.1D** Pseudogout ... 24-14
- **Figure 24-4.1E** Calcium Pyrophosphate Deposition Positive Birefringence 24-14
- **Figure 24-5.2** Septic Arthritis ... 24-15

Chapter 25 Bone Pathology

- **Figure 25-1.3** Anatomy of a Bone ... 25-1
- **Figure 25-1.4A** Compact Bone ... 25-2
- **Figure 25-1.4B** Cancellous/Spongy Bone .. 25-2
- **Figure 25-1.4C** Lamellar Bone ... 25-2
- **Figure 25-1.5** Origin of Bone Cells ... 25-3
- **Figure 25-1.6** Osteocytes ... 25-3
- **Figure 25-2.1** Achondroplasia ... 25-4
- **Figure 25-2.3** Osteogenesis Imperfecta .. 25-5
- **Figure 25-2.4** "Marble Bone" Disease .. 25-5
- **Figure 25-3.1A** Osteoporosis ... 25-7
- **Figure 25-3.1B** Osteoporosis/Thinning of Vertebrae 25-7
- **Figure 25-3.2** Osteitis Fibrosa Cystica/Increased Osteoclastic Activity 25-8
- **Figure 25-3.3** Osteomalacia ... 25-9
- **Figure 25-3.4A** Rachitic Rosary ... 25-10
- **Figure 25-3.4B** Rickets: Bowing of Legs .. 25-10
- **Figure 25-3.5** Renal Osteodystrophy ... 25-10
- **Figure 25-3.6A** First Stage ... 25-11
- **Figure 25-3.6B** Third Stage ... 25-11
- **Figure 25-4.2A** Osteonecrosis ... 25-14
- **Figure 25-4.2B** Blood Clot and Fracture Site Over Time 25-15
- **Figure 25-5.1A** Osteomyelitis ... 25-16
- **Figure 25-5.1B** Tuberculous Osteomyelitis ... 25-17
- **Figure 25-6.3A** Osteoid Osteoma .. 25-19
- **Figure 25-6.3B** Osteosarcoma ... 25-19
- **Figure 25-7.0A** Osteochondroma ... 25-20
Table of Contents

Pathology

- Figure 25-7.0B . . Enchondroma 25-20
- Figure 25-7.0C . . Enchondroma 25-20
- Figure 25-7.0D . . Tumors 25-21
- Figure 25-8.1 . . Fibrous Dysplasia 25-21
- Figure 25-8.2 . . Ewing Tumor 25-22

Chapter 26 Muscle Pathology
- Figure 26-1.0A . . Skeletal Muscle Fiber (part 1) 26-1
- Figure 26-1.0B . . Skeletal Muscle Fiber (part 2) 26-2
- Figure 26-1.0C . . Skeletal Muscle Fiber (part 3) 26-2
- Figure 26-2.1A . . Duchenne Muscular Dystrophy 26-3
- Figure 26-2.1B . . Dystrophin 26-4
- Figure 26-2.1C . . Duchenne Muscular Dystrophy/Variation in Muscle Fiber Size 26-4
- Figure 26-2.3A . . Myotonic Dystrophy 26-5
- Figure 26-2.3B . . Myotonic Dystrophy 26-6
- Figure 26-3.1 . . Diseases of Neuromuscular Junction 26-7
- Figure 26-3.3 . . Heliotrope Rash 26-8

Chapter 27 Soft Tissue Pathology
- Figure 27-2.2 . . Liposarcoma 27-1
- Figure 27-3.2 . . Superficial Fibromatosis 27-2
- Figure 27-3.4 . . Fibrosarcoma 27-2
- Figure 27-4.1 . . Benign Smooth Muscle Tumor 27-3
- Figure 27-4.3 . . Rhabdomyosarcoma 27-4

Chapter 28 Dermatopathology
- Figure 25-1.1A . . Macroscopic Dermatology Findings 28-1
- Figure 28-2.1A . . Verruca ... 28-3
- Figure 28-2.1B . . Koilocytes 28-3
- Figure 28-2.1C . . Molluscum Contagiosum 28-4
- Figure 28-2.2A . . Impetigo Caused by S. Pyogenes 28-4
- Figure 28-2.2B . . Acne Rosacea 28-5
- Figure 28-2.3A . . Tinea Capitis 28-6
- Figure 28-2.3B . . KOH Preparation for Wood Lamp 28-6
| Figure 28-2.3C | Tinea Corporis | 28-7 |
| Figure 28-2.3D | Tinea Versicolor | 28-8 |
| Figure 28-2.3E | Sporotrichosis | 28-9 |
| Figure 28-3.1A | Erythema Multiforme | 28-10 |
| Figure 28-3.1B | Urticaria (Hives) | 28-10 |
| Figure 28-3.3A | Psoriasis: Pitting of Nails | 28-11 |
| Figure 28-3.3B | Psoriasis | 28-11 |
| Figure 28-3.4 | A Lichen Planus | 28-12 |
| Figure 28-3.5A | Pemphigus Vulgaris | 28-12 |
| Figure 28-3.5B | Bullous Pemphigoid | 28-13 |
| Figure 28-3.5C | Vesicobullous Dermatitis | 28-13 |
| Figure 28-3.6 | Erythema Nodosum | 28-13 |
| Figure 28-4.1A | Junctional Nevus | 28-14 |
| Figure 28-4.1B | Compound Nevus | 28-14 |
| Figure 28-4.1C | Intradermal Nevus | 28-15 |
| Figure 28-4.1D | Seborrheic Keratosis | 28-15 |
| Figure 28-4.2 | Actinic Keratosis | 28-16 |
| Figure 28-4.3A | Basal Cell Carcinoma | 28-16 |
| Figure 28-4.3B | Squamous Cell Carcinoma | 28-17 |
| Figure 28-4.4A | Superficial Spreading Melanoma | 28-18 |
| Figure 28-4.4B | Lentigo Maligna Melanoma | 28-18 |
| Figure 28-4.4C | Nodular Melanoma | 28-18 |
| Figure 28-4.4D | Acral Lentiginous Melanoma | 28-18 |
Chapter 1 Cellular Pathophysiology

Table 1-2.0 . . . Oxygen \((O_2)\) Content .. 1-3
Table 1-2.3 . . . Causes of Hypoxia .. 1-17
Table 1-3.2 . . . Free Radical Formation ... 1-20
Table 1-3.3 . . . Free Radical Neutralization 1-21
Table 1-5.3 . . . Causes of Atrophy .. 1-28
Table 1-5.4 . . . Causes of Metaplasia .. 1-29
Table 1-6.6 . . . Types of Necrosis ... 1-33

Chapter 2 The Inflammatory Reaction

Table 2-2.1 . . . Chemotaxins .. 2-6

Chapter 3 Tissue Repair and Wound Healing

Table 3-4.0 . . . Collagen Types ... 3-7

Chapter 4 Hemodynamics

Table 4-2.1A . . . Use of Bleeding Parameters in Diagnosis 4-9
Table 4-2.1B . . . Diagnostic Parameters of Bleeding 4-9
Table 4-8.4 . . . Shock Differentials .. 4-18

Chapter 5 Neoplasia

Table 5-1.1 . . . Benign vs. Malignant Neoplasms 5-1
Table 5-1.2 . . . Names for Benign and Malignant Neoplasms 5-1
Table 5-1.4 . . . Sarcomas ... 5-3
Table 5-2.1A . . . DNA Damaging Chemicals 5-5
Table 5-2.1B . . . Radiation and Associated Cancers 5-5
Table 5-2.2A . . . Oncogenes Affecting Growth Factors 5-7
Table 5-2.2B . . . Oncogenes Affecting Signal Transduction 5-8
Table 5-2.2C . . . Oncogenes Affecting Cell Cycle Regulation 5-8
Table 5-2.3 . . . Inactivation of Tumor Suppressor Genes 5-10
Table 5-3.1 . . . Cancer Incidence and Mortality in Adults 5-15
Table 5-4.2 . . . Serum Tumor Markers ... 5-16
Table 5-4.3 . . . Immunohistochemistry .. 5-16
Table 5-5.1 . . . Paraneoplastic Syndromes 5-17
Table 5-5.2 . . . Paraneoplastic Endocrinopathies 5-17
Chapter 6 Red Blood Cell Pathology
Table 6-3.2A ... α-Thalassemia Genotype Expression 6-11
Table 6-3.2B ... β-Thalassemia Genotype Expression 6-12
Table 6-3.3 ... Microcytic Anemias .. 6-14
Table 6-4.1 ... Vitamin B12 Deficiency .. 6-15
Table 6-4.2 ... Folic Acid Deficiency ... 6-16
Table 6-4.3 ... Clinical Features and Laboratory Findings 6-17
Table 6-7.4 ... Differentials of Polycythemia 6-32
Table 6-7.5 ... Types of Polycythemia .. 6-32

Chapter 7 White Blood Cell Pathology
Table 7-4.0 ... Leukemias ... 7-6
Table 7-4.1 ... Onset of Leukemias ... 7-8
Table 7-4.2 ... Indications of Leukemias 7-12

Chapter 8 Lymphoid Pathology
Table 8-2.4A ... Ann Arbor Classification of Tumor Staging 8-3
Table 8-2.4B ... Characteristics of Subtypes 8-5
Table 8-2.5 ... Hodgkin vs. Non-Hodgkin 8-8

Chapter 9 Immunohematology
Table 9-1.5 ... Parental-Fetal Blood Group Combinations With Viability Options 9-1

Chapter 11 Cardiovascular Pathology
Table 11-1.0 ... Hypertension .. 11-1
Table 11-3.4 ... Hyperlipoproteinemias 11-8

Chapter 12 Pulmonary Pathology
Table 12-6.2 ... Typical Pneumonia Pathogens 12-16

Chapter 13 Renal Pathology
Table 13-2.5 ... Acute Renal Failure .. 13-10
Chapter 14 Gastrointestinal (GI) Pathology
 Table 14-3.5 ... Neoplastic Diseases .. 14-5
 Table 14-5.0 ... Hemorrhagic Gastritis 14-8
 Table 14-5.1 ... Gastric and Duodenal Ulcers 14-9
 Table 14-5.3 ... Small Bowel Obstruction vs. Small Bowel Infarction ... 14-14
 Table 14-6.0A ... Types and Characteristics of Diarrhea 14-16
 Table 14-6.0B ... Pathogens and Diarrhea 14-16
 Table 14-7.0 ... Malabsorption Syndromes 14-22
 Table 14-9.0 ... Ulcerative Colitis vs. Crohn Disease 14-24
 Table 14-12.1A ... Duke Classifications 14-28
 Table 14-12.1B ... Right-Sided Colorectal Cancer vs. Left-Sided Colorectal Cancer ... 14-29

Chapter 15 Hepatobiliary Pathology
 Table 15-1.1 ... Liver Function Tests (LTFs) 15-4
 Table 15-4.1 ... Viral Hepatitis ... 15-12

Chapter 17 Male Reproductive Pathology
 Table 17-4.0A ... Testicular Tumors: Germ Cell Tumors 17-6
 Table 17-4.0B ... Comparison Features 17-7
 Table 17-4.0C ... Non-Germ Cell Tumors 17-7
 Table 17-6.2 ... Common Abnormalities 17-13

Chapter 18 Female Reproductive Pathology
 Table 18-7.0 ... Hirsutism vs. Virilization 18-12
 Table 18-8.3 ... Causes of Abnormal Bleeding by Age 18-15
 Table 18-8.4 ... Differentials of Amenorrhea 18-16
 Table 18-11.2 ... Classification of Ovarian Tumors 18-22
 Table 18-13.0 ... Sexually Transmitted Diseases and Genital Infections 18-27
 Table 18-15.1 ... Nipple Discharge Type 18-32
 Table 18-18.0 ... Types of Breast Cancer 18-35
Chapter 19 Endocrine Pathology

Table 19-1.0A Cell Surface Receptors: Downstream Mechanisms 19-2
Table 19-1.0B Steroid Hormone Receptors .. 19-2
Table 19-3.3 Pituitary Apoplexy and Sheehan Syndrome 19-8
Table 19-3.4 Prolactin Pharmacology .. 19-9
Table 19-4.3 Summary of Thyroid Disorders .. 19-15
Table 19-4.4A Thyroid Function Tests During Pregnancy 19-17
Table 19-4.4B Diagnostic Tests ... 19-17
Table 19-5.3 Congenital Adrenal Hyperplasia ... 19-31
Table 19-6.1 Pancreatic Islet Cells .. 19-33
Table 19-6.2 Endogenous vs. Exogenous Insulin 19-36
Table 19-6.3A Osmolarity Changes Found in Diabetes Mellitus 19-41
Table 19-6.3B Summary of Type I and Type II Diabetes 19-42
Table 19-6.3C Classification of Diabetic Retinopathy 19-45

Chapter 20 Central Nervous System Pathology

Table 20-5.4 Motor Neuron Signs ... 20-14
Table 20-7.6A Posterior Circulation Deficits .. 20-27

Chapter 22 Optic Pathology

Table 22-5.0 Granulomatous vs. Nongranulomatous Uveitis 22-6

Chapter 23 Connective Tissue Disorders

Table 23-1.4 Summary of Collagen Disorders ... 23-5

Chapter 24 Joint Pathology

Table 24-2.2 Diseases Affecting Joints ... 24-4

Chapter 25 Bone Pathology

Table 25-3.1 Osteoclastogenesis ... 25-6
Table 25-3.3 Characteristics of Vitamin D Deficiency 25-9
Table 25-3.5 Osteoporosis and Osteomalacia .. 25-10
Table 25-3.6A Stages of Paget Disease ... 25-11
Table 25-3.6B . . Expected Lab Findings in Metabolic Bone Disease 25-12
Table 25-5.1 . . Osteomyelitis .. 25-16
Table 25-6.2 . . Benign Bone-Forming Tumors 25-18
Table 25-7.0 . . Cartilage Forming Tumors 25-20

Chapter 26 Muscle Pathology
 Table 26-1.0 . . Muscle Twitch .. 26-1

Chapter 27 Soft Tissue Pathology
 Table 27-1.0 . . Connective Tissue Tumors 27-1
General Principles of Pathology
Overview of Cellular Pathophysiology

1.1 Homeostasis
The normal cell is capable of making responses to physiologic demands and maintaining a steady state of function referred to as homeostasis. When a new steady state is achieved in response to altered physiologic stress, the process is referred to as adaptation. Adaptations are reversible changes that allow cells to survive and function. If the ability of cells to adapt is exceeded, cell injury results, and this is also reversible to a point. If the injurious stimulus persists, and adaptation is no longer possible, irreversible cell injury and cell death ensue.

1.2 Causes of Cell Injury
Physiologic adaptation to stress can progress to significant cell injury if the stimulus is not removed. A variety of causes of injury exist, including:
- Hypoxia: A deficiency of oxygen that reduces aerobic oxidative respiration
- Chemical agents/drugs
- Infectious agents
- Immunologic reactions
- Congenital/genetic derangements
- Mechanical trauma
- Nutritional deficiency or excess

1.3 Variables in Cell Injury
The response of cells to injurious stimuli depends on a number of variables:
- The nature of the injurious stimulus
- The duration of action or injury
- The adaptability of specific cells to injury; for example, anoxia causes cell death in:
 - Neurons: 3 to 5 minutes
 - Myocardium: 1 to 2 hours
 - Fibroblasts: hours

USMLE® Key Concepts
For Step 1, you must be able to:
- Describe the limitations of cellular adaptation and the causes of cell injury.
- Define the distinctions between reversible and irreversible cell injury.
- Explain the causes and pathophysiologic results of tissue hypoxia.
- Identify the microscopic changes involved in cell injury from free radicals and aging.
- Describe hyperplasia, hypertrophy, atrophy, metaplasia, and dysplasia as cellular responses to stress.
- List the major types of tissue necrosis.
Tissue Hypoxia

Hypoxia, or inadequate oxygenation of tissue, is the most common cause of cell injury. The necessity for a cell to use anaerobic metabolism results in the following reversible changes:

- The production of fewer molecules of ATP.
- Impairment of the Na⁺ pump causes cellular swelling.
- Increased lactic acid.
- Decrease in pH.

Irreversible changes may follow:

- Continued pH decrease causes chromatin clumping.
- Lactic acid denatures lysosomal enzymes and causes coagulation necrosis.
- Increased lactic acidosis causes an increase in metabolic acidosis.

Connection to Biochemistry

Oxidative Phosphorylation and the Electron Transport Chain

Inadequate oxygenation decreases synthesis of adenosine triphosphate (ATP):

1. ATP synthesis occurs in the inner mitochondrial membrane by the process of oxidative phosphorylation.
2. O₂ is an electron acceptor located at the end of the electron transport chain (ETC) in the oxidative pathway.
3. A lack of O₂ or a defect in oxidative phosphorylation culminates in a decrease in ATP synthesis.
The only way to produce ATP when oxidative phosphorylation is compromised by hypoxia is through anaerobic glycolysis. Cancer cells predominantly use anaerobic glycolysis for energy.

Clinical Application

| Table 1-2.0 Oxygen (O₂) Content |
|-------------------------------|-----------------|-----------------|-----------------|
| Term | Definition | Contributing Factor | Significance |
| Hemoglobin | Most important O₂ carrier | Marrow or extramedullary synthesis | Anemia vs. polycythemia |
| PaO₂ | Pressure keeping O₂ dissolved in the plasma of arterial blood (0.003 x PaO₂) | Percentage of O₂ in inspired air, atmospheric pressure, normal O₂ exchange in lungs | Reduced in hypoxemia |
| SaO₂ | Average percentage of four heme groups binding O₂ | • PaO₂ and valence of heme iron in each of the four heme groups • O₂ binds to Fe²⁺ and does not bind to Fe³⁺ | SaO₂ <80% produces cyanosis of skin and mucous membranes |
| O₂ content = (Hb x 1.34) x SaO₂ ÷ (PaO₂ x 0.003) | Total amount of O₂ carried in blood | • Hemoglobin concentration in RBCs, PaO₂, SaO₂ • Hemoglobin concentration determines total amount of O₂ delivered to tissue | Hemoglobin is the most important carrier of O₂ |

Connection to Pharmacology

The down-regulation of O₂ results in the up-regulation of EPO. Conversely, the up-regulation of O₂ results in the down-regulation of EPO.
Pulse oximetry is a noninvasive test for measuring \(\text{SaO}_2 \) using a probe that is clipped over the patient's finger. This test detects oxy- and deoxyhemoglobins, but does not identify dyshemoglobins such as methemoglobin and carboxyhemoglobin. In the presence of such dyshemoglobins, the oximeter calculates a falsely high \(\text{SaO}_2 \). The co-oximeter is able to calculate an accurate \(\text{SaO}_2 \) in the presence of dyshemoglobins.

2.1 Causes of Tissue Hypoxia
2.1.1 Ischemia
Ischemia is the most common cause of hypoxia, and is defined as a decrease in arterial blood flow or venous outflow of blood. The most common cause of ischemia is atherosclerosis. Other causes include decreased cardiac output (e.g., heart failure) and thrombosis of the blood vessels. The results of tissue hypoxia include infarction, organ dysfunction, and tissue atrophy.

\[\text{Ischemia} \]

\[\text{Mitochondrion} \]

- \(\downarrow \) Oxidative phosphorylation
- \(\downarrow \) ATP
- \(\downarrow \) Na Pump
- \(\uparrow \) Influx of \(\text{Ca}^{++} \), \(\text{H}_2\text{O} \), and \(\text{Na}^+ \)
- \(\uparrow \) Efflux of \(\text{K}^+ \)
- \(\downarrow \) Glycogen
- \(\downarrow \) pH
- Clumping of nuclear chromatin
- Detachment of ribosomes, etc.
- Protein synthesis
- Lipid deposition

\[\text{Figure 1-2.1A Ischemia} \]
2.1.2 Hypoxemia
Hypoxemia is defined as \downarrow PaO$_2$. It may be caused by any of the following:

Decreased inspired PO$_2$ (PiO$_2$) High altitude is the most common cause.

![Initial left shift due to alkalosis](image)
Eventual right shift due to \uparrow 2,3 BPG

Hypoventilation and Respiratory Acidosis
- \uparrowPaCO$_2$ → \downarrowPAO$_2$ → \downarrowPaO$_2$ → \downarrowSaO$_2$
- A change of any kind (increase or decrease) to alveolar CO$_2$ which is represented by P_ACO$_2$, will cause a directly proportionate change in PaO$_2$:
 - \uparrowPaCO$_2$ → \downarrowPaO$_2$ → \downarrowSaO$_2$
- A \downarrowSaO$_2$ may occur without a \downarrowPAO$_2$ and \downarrowPaO$_2$
 (e.g., methemoglobinemia, CO poisoning)

Ventilation Defect A common example is respiratory distress syndrome with impaired O$_2$ delivery to the alveoli (e.g., respiratory distress syndrome, acute respiratory distress syndrome, resorption atelectasis following surgery).
- No O$_2$ exchange in the pulmonary vasculature due to lack of ventilation, even though the alveoli are being perfused.
- Diffuse alveolar disease produces intrapulmonary shunting of alveoli.
- Consequence is that the pulmonary capillary blood has the same PO$_2$ and PCO$_2$ as venous blood returning from tissue.
- Inspired increase in percentage of O$_2$ from 0.24% to 0.28% or greater does not significantly increase the PaO$_2$.
- This only applies to diffuse ventilation defects involving lungs being injured bilaterally.
- Smaller pulmonary injuries are compensated by normally ventilated lungs.
- Respiratory distress syndrome: Giving O$_2$ does not significantly increase the PaO$_2$ (all alveoli in both lungs are collapsed).
Perfusion Defect
- Absence of blood flow to alveoli (e.g., pulmonary embolus or fat embolism).
- No O_2 exchange in the pulmonary vasculature due to lack of perfusion, even though the alveoli are being ventilated.
- Produces an increase in dead space.
- Inspired percentage of O_2 from 0.24% to 0.28% or greater does increase the PaO_2.
- Giving $O_2 \uparrow PaO_2$ (areas of lung not infarcted have normal gas exchange).
Diffusion Defects Cause decreased O_2 diffusion through the alveolar-capillary interface.
- Interstitial fibrosis (black lung or pneumoconiosis; e.g., sarcoidosis)
- Pulmonary edema

![Figure 1-2.1G Diffusion Defect](image)

Alveolar-arterial (A-a) Gradient
- $A = P_AO_2 = [P_{atm} \text{-Humidified air in the trachea (47 mmHg)}] \times \%O_2 \text{ ambient (0.21)} - \frac{P_{CO_2}}{0.8}$
- $a = P_{CO_2}$, provided by arterial blood gas (ABG)
- Normal A-a gradient: Up to 30 mmHg
- Ventilation, perfusion, and diffusion defects create an increase in A-a gradient and refer to intrapulmonary manifestations

2.1.3 Hemoglobin-Related Abnormalities

Anemia
- Decreased hemoglobin concentration of <7 g/dL.
- Causes are vast and numerous (see chapter 8 on Hematology).
 - Iron deficiency is the most common overall anemia due to long-term bleeding.
 - Microcytic anemias
 - Macrocytic anemias
 - Normochromic anemias
- Normal PAO_2 and SAO_2 with decreased O_2 content.

![Figure 1-2.1H Anemia](image)
Methemoglobinemia

- Methemoglobin is the oxidized (ferric, or Fe³⁺) form of the heme group which cannot bind O₂.
- Produced by oxidant stresses:
 - Nitrite and sulfur-containing drugs
 - Sepsis
 - Local anesthetics (e.g., benzocaine)
- Congenital deficiency of cytochrome b₅ reductase.
- Pathogenesis:
 - Ferric heme groups impair unloading of O₂ by oxygenated ferrous (Fe²⁺) heme, causing a left shift of the OBC.
 - Clinically evident cyanosis occurs at metHb levels greater than 1.5 g/dL.
 - *Methemoglobin* is converted to the ferrous state (Fe²⁺) by the reduced nicotinamide adenine dinucleotide (NADH) reductase system located off the glycolytic pathway in RBCs.
 - Electrons from NADH are transferred to cytochrome b₅ and then to metHb by cytochrome b₅ reductase to produce ferrous Hb.
 - Newborns are particularly at risk for developing methemoglobinemia after oxidant stresses owing to decreased levels of cytochrome b₅ reductase until at least 4 months of age.
 - Patients with methemoglobinemia have increased concentration of deoxyhemoglobin and cyanosis resulting in “chocolate” coloration of blood.
 - Skin color does not return to normal after administration of O₂.
- Treatment: Methylene blue acts as an artificial electron carrier in the reduced NADPH metHb reductase system of the pentose phosphate shunt.

Carbon Monoxide (CO)

- Leading cause of death due to poisoning.
- Produced by incomplete combustion of carbon containing compounds (automobile exhaust, wood stoves, paint thinner).
- Pathogenesis:
 - Competes with O₂ for binding sites on Hb.
 - Causes left shift of the OBC.
 - Inhibits cytochrome oxidase in the electron transport chain, which is part of complex IV.
Clinical Findings:
- Cherry-red discoloration of the skin and blood.
- CO intoxication levels and their associated set of symptoms:
 - CO levels of 10% to 20% → Headache
 - CO levels of 20% to 30% → Dyspnea and dizziness
 - CO levels of 50% to 60% → Seizures and coma

Treatment: O₂ via nonbreather mask or endotracheal tube (100% O₂)

Hemoglobin-Related Abnormalities
Factors that cause a right or left shift of the oxygen binding curve (OBC, ODC)

Fetus: O₂ from maternal lake; need high affinity HbF
- Left shift:
 - ↓ H⁺ (Alkalosis)
 - ↓ BPG
 - ↓ Temp
 - ↑ HbF
 - ↑ CO
 - ↑ MetHb

Fever is good; O₂ dependent MPO system
- Right shift:
 - ↑ H⁺ (Acidosis)
 - ↑ BPG
 - ↑ Temp
 - ↑ Altitude

FiguRe 1–2.1K O₂-Binding Curve (OBC)
2.2 Tissue Susceptible to Hypoxia

2.2.1 Watershed Areas
- Lie between the terminal branches of major arterial blood supplies.
- The blood supply from the two vessels does not overlap.
- Examples:
 - In the brain between the anterior and middle cerebral arteries.
 - In the splenic flexure between the superior and inferior mesenteric arteries.

2.2.2 Subendocardial Tissue
This tissue receives the least oxygenation and hence is most susceptible to hypoxia.

Clinical Application

Coronary Artery Blood Flow

Factors decreasing coronary artery blood flow (e.g., coronary artery atherosclerosis) produce subendocardial ischemia, which is manifested by chest pain (i.e., angina) and ST-segment depression in an electrocardiogram (ECG). Increased thickness of the left ventricle (i.e., hypertrophy) in the presence of increased myocardial demand for O_2 (e.g., exercise) also can produce subendocardial ischemia.

2.2.3 Renal Cortex and Medulla
- In the cortex, the straight portion of the proximal tubule is most susceptible to hypoxia.
- In the medulla, the Na⁺-K⁺-2Cl⁻ cotransport channel in the thick ascending limb is most susceptible to hypoxia.

2.2.4 Neurons in the Central Nervous System
- Examples: Purkinje cells in cerebellum; neurons in layers 3, 5, and 6 of the cerebral cortex.
- Irreversible injury occurs in ~5 minutes after global hypoxia.
2.2.5 Hepatocytes Located Around the Central Vein

In the *portal triads*, tributaries of the hepatic artery carrying oxygenated blood and portal vein tributaries carrying unoxygenated blood empty into the liver sinusoids, which drain blood into the central veins (terminal hepatic venules). The central veins become the hepatic vein, which empties into the inferior vena cava. Therefore, hepatocytes closest to the portal triads (zone I) receive the most oxygen and nutrients, and those farthest from the portal triads (zone III around the central vein) receive the least amount of oxygen and nutrients. For this reason, production of free radicals from drugs (e.g., acetaminophen), tissue hypoxia (e.g., shock, CO poisoning), and alcohol-related fatty change cause most initial damage to zone III hepatocytes.
2.3 Consequences of Hypoxic Cell Injury

2.3.1 Reversible Cellular Injury

Anaerobic glycolysis is used for ATP synthesis and is accompanied by several changes:

- Activation of phosphofructokinase
 - Caused by low citrate levels and increased adenosine monophosphate
 - Net gain of 2 ATP instead of aerobic results of 36 ATP
- Decrease in intracellular pH caused by an excess of lactate
 - Also accumulates in blood, producing lactic acidosis
 - Denatures structural and enzyme proteins
- Impaired Na⁺/K⁺-ATPase pump which actively keeps 2K⁺ intracellularly for 3Na⁺ extracellularly
 - Diffusion of Na⁺ and H₂O into cells causes cellular swelling
 - Potentially reversible with restoration of O₂
- Decreased protein synthesis
- Due to detachment of ribosomes (potentially reversible)

Reversible Changes

Cell swelling
First sign of hypoxia

Figure 1–2.3A Anaerobic Glycolysis:
Diffusion of Na⁺ and H₂O Into Cell
2.3.2 Irreversible Cellular Changes

Calcium (Ca\(^{2+}\)) entry into the cell is an indication of irreversible cellular injury because the Ca\(^{2+}\)-ATPase pump normally functions to keep Ca\(^{2+}\) out of the cytosol. Impairment of the Ca\(^{2+}\)-pump resulting in increased cytosolic Ca\(^{2+}\) has two lethal effects:

- **Enzyme Activation**
 - Phospholipase increases cell and organelle membrane permeability
 - Proteases damage the cytoskeleton
 - Endonucleases cause fading of nuclear chromatin (karyolysis)
 - ATPases destroy ATP

- **Re-entry of Ca\(^{2+}\) Into Mitochondria**: Increases mitochondrial membrane permeability resulting in release of cytochrome c and subsequent apoptosis through activation of caspases

![Diagram of Ca\(^{2+}\) transport and its effects](image-url)

Figure 1-2.3B Re-entry of Ca\(^{2+}\) Into Mitochondria
2.3.3 Damage to Cellular Organelles

Hypoxia can damage cellular organelles, affecting virtually all aspects of cellular physiology.

Cytoskeleton

Normally, the cytoskeleton is a network of microtubules, actin filaments, and intermediate filaments in the cytosol that control the shape and motility of cells.

- Microtubules are polymers composed of the protein tubulin.
- Thick (myosin) and thin (actin) filaments are involved in the contractile process.
- Intermediate filaments are important in the anchoring of cell organelles.

Ubiquitination

- **Ubiquitin**, a stress protein, binds to damaged intermediate filaments, and marks them for degradation in proteasomes and lysosomes of the cytosol.
- Hallmark of atrophy: *autophagic vacuoles*.

Connection to Pharmacology

Several anticancer drugs target the formation of the mitotic spindle:

- Tubulin depolymerization inhibitors: paclitaxel
- Tubulin polymerization inhibitor: colchicine, vinblastine

![Figure 1-2.3C Ubiquitination](image)
Intermediate Filament Defects

- **Mallory Bodies**: Ubiquitinated cytokeratin intermediate filaments in hepatocytes in alcoholic liver disease.
- **Lewy Bodies**:
 - Damaged neurofilaments in idiopathic Parkinson disease.
 - Eosinophilic cytoplasmic inclusion in degenerating substantia nigra neurons.

Mitochondria

Mitochondrial Injury

- Enzyme inhibition of oxidative phosphorylation results in decreased ATP synthesis.
- CO and cyanide (CN) inhibit cytochrome oxidase in Complex IV of ETC.
- Damaging agents such as alcohol, salicylates, calcium → release cytochrome c → activation of caspases → apoptosis.
- Uncouplers carry protons in the intermembranous space through the inner mitochondrial membrane into the matrix without damaging the mitochondrial membrane.
 - This wasted oxidative energy is channeled to produce heat rather than intended ATP.
 - Dinitrophenol, found in TNT and nitroprusside, synthesizes heat, increasing the risk for hyperthermia in adults.

Cyanide

- Causes:
 - Drugs such as nitroprusside.
 - Combustion of polyurethane products in house fires.
- Pathogenesis:
 - It produces initial central nervous system and cardiovascular stimulation followed by depression and death.
 - It produces increased venous P\text{\textsubscript{\text{mvO}}\textsubscript{2}} and saturation.
 - Tissue cannot extract O\textsubscript{2}.
 - Drugs (e.g., nitroprusside); house fires (combustion from synthetic fiber is the most common cause).
 - Inhibits cytochrome oxidase (normally converts O\textsubscript{2} to water); shift to anaerobic glycolysis for ATP (lactic acidosis).
 - Bitter almond smell to breath.
 - SaO\textsubscript{2} is not decreased in venous blood and is similar to the SaO\textsubscript{2} in arterial blood.
 - When the ETC is blocked, O\textsubscript{2} does not diffuse into tissue (gradient is lost), because it no longer is being utilized to generate ATP.
- Treatment:
 - Option 1: Two-step protocol
 1. Amyl nitrite forms cyanmethemoglobin; CN can only bind to oxidized (Fe3+), not reduced, iron (Fe2+).
 2. Thiosulfate binds with CN and becomes thiocyanate, which is excreted.
 - Option 2: Hydroxycobalamin, a precursor to vitamin B12, is converted to cyanocobalamin.
Figure 1-2.3E Electron Transport Chain: BCL₂ Gene and Cytochrome c
Table 1-2.3 Causes of Hypoxia

<table>
<thead>
<tr>
<th>Injury</th>
<th>(\dot{\text{PaO}}_2)</th>
<th>(\dot{\text{SaO}}_2)</th>
<th>(\dot{\text{O}_2})-Binding Curve</th>
<th>Cytochrome Oxidase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Normal</td>
<td>Decreased</td>
<td>Left-shifted</td>
<td>Inhibited</td>
</tr>
<tr>
<td>Methemoglobin</td>
<td>Normal</td>
<td>Decreased</td>
<td>Left-shifted</td>
<td>Normal</td>
</tr>
<tr>
<td>Cyanide</td>
<td>Normal</td>
<td>Normal ((\dot{\text{O}_2}) not removed from blood)</td>
<td>Normal</td>
<td>Inhibited</td>
</tr>
</tbody>
</table>

2.3.4 Smooth Endoplasmic Reticulum (SER)

Smooth endoplasmic reticulum responsible for detoxification through cytochrome P450 system (CYP450).

- Drugs (phenytoin, barbiturates) may speed the CYP450 system and cause faster metabolism of drugs or decrease their efficacy (for example, patient taking phenytoin to prevent seizures may become pregnant even when she is taking oral contraceptives).
- Drugs may inhibit the CYP450 system and increase drug toxicity.
2.3.5 Lysosomes

Formation

Hydrolytic enzymes synthesized by the rough endoplasmic reticulum (RER) are transported to the Golgi apparatus for posttranslational modification.

- Modification involves attaching phosphate (via phosphotransferase) to mannose residues on hydrolytic enzymes to produce mannose 6-phosphate.
- The marked lysosomal enzymes attach to specific mannose 6-phosphate receptors on the Golgi membrane.
- Vesicles containing the receptor-bound lysosomal enzymes pinch off the Golgi membrane to form primary lysosomes in the cytosol.
- Fusion of additional vesicles to the primary lysosomes further increases their content of hydrolytic enzymes.
- Small vesicles containing only the receptors pinch off the primary lysosomes and return to the Golgi apparatus to bind more marked lysosomal enzymes so the cycle can repeat itself.

Functions

- **Heterophagy**: Phagosome (phagocytic leukocyte) containing ingested microbes becomes phagolysosome (secondary lysosome) after lysosomal fusion.
- **Autophagy**: Destruction of cell organelles.
- Degradation of complex substrates (e.g., sphingolipids, glycosaminoglycans).

Lysosomal Disorders

Inclusion (I)-Cell Disease

- Inherited deficiency of phosphotransferase involved in marking newly formed lysosomal enzymes.
- Without mannose 6-phosphate to direct the enzymes to lysosomes, the enzymes are emptied into the extracellular spaces to be degraded in the bloodstream.
- Undigested substrates, such as carbohydrates, lipids, and proteins, accumulate in the cytosol as inclusions.
- Individuals will display psychomotor retardation and early death.

▲ Figure 1–2.3G Heterophagy and Autophagy
Chédiak-Higashi Syndrome
- Autosomal recessive defect in lysosomal transport protein which affects formation of:
 - Lysosomes in leukocytes
 - Azurophilic granules in neutrophils
 - Dense bodies in platelets
 - Melanosomes in melanocytes
- Granules fuse together to become megagranules
- Defect of microtubule function prevents phagolysosome formation

Figure 1-2.3H Megagranule Formation in CHS

Lysosomal Storage Diseases
These diseases result from deficiencies of important lysosomal enzymes involved in the degradation of complex substrates. As a result, incompletely digested substrates accumulate in lysosomes.
- **Gaucher Disease:** Glucocerebrosidase deficiency causes accumulation of *glucocerebrosides* in the lysosome.
- **Pompe Disease:** Deficiency of α-1,4-glucosidase causes an accumulation of *glycogen* in the lysosome.
Free Radical Cell Injury

Free radicals (FRs) are unstable chemical compounds with an unpaired electron in their outermost orbital. They cause the loss of electrons from other molecules, resulting in a chain reaction which culminates in cell death.

3.1 Mechanisms of Action

- FRs produce DNA fragmentation and dissolution.
- FRs initiate lipid peroxidation of polyunsaturated lipids in cell and mitochondrial membrane.
- FRs combine with O₂, increasing membrane permeability to Ca²⁺, leading to irreversible cellular injury.

3.2 Injuries Causing Free Radical Formation

Table 1–3.2 Free Radical Formation

<table>
<thead>
<tr>
<th>Injury</th>
<th>Form of Free Radical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionizing radiation</td>
<td>Hydroxyl FRs</td>
</tr>
<tr>
<td>Damage to mitochondria</td>
<td>Superoxide FRs</td>
</tr>
<tr>
<td>High oxygen concentration</td>
<td>Superoxide and hydroxyl FRs: Hydrogen peroxide → Hydroxyl and peroxide FRs</td>
</tr>
<tr>
<td>NADPH oxidase reactions</td>
<td>H₂O₂ + MPO → HOCl FRs</td>
</tr>
<tr>
<td>Xanthine oxidase</td>
<td>Superoxide FRs</td>
</tr>
<tr>
<td>Acetaminophen</td>
<td>Acetaminophen FRs in liver</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>CCl₃ FRs in liver</td>
</tr>
<tr>
<td>Low-density lipoproteins (LDLs)</td>
<td>Oxidized to LDL FR by macrophages, smooth muscle cells, and endothelial cells</td>
</tr>
<tr>
<td>Cigarette smoke</td>
<td>Quinone/hydroquinone FRs from tar, nitric oxide (FR gas)</td>
</tr>
<tr>
<td>Nitrogen dioxide, ozone (pollution)</td>
<td>Nitrate FRs</td>
</tr>
<tr>
<td>Iron, copper</td>
<td>Hydroxyl FRs (the Fenton reaction)</td>
</tr>
</tbody>
</table>
3.3 Free Radical Neutralization

Table 1-3.3 Free Radical Neutralization

<table>
<thead>
<tr>
<th>Agent</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superoxide dismutase (SOD)</td>
<td>Converts superoxide FRs to peroxide and O_2</td>
</tr>
<tr>
<td>Glutathione peroxidase</td>
<td>Located in the hexose monophosphate (HMP) shunt, this agent neutralizes H_2O_2, hydroxyl, and acetaminophen FRs</td>
</tr>
<tr>
<td>Catalase</td>
<td>Present in peroxisomes, this agent degrades peroxide into O_2 and water</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Prevents lipid peroxidation in cell membranes</td>
</tr>
<tr>
<td></td>
<td>Neutralizes oxidized LDL</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Neutralizes FRs produced by pollutants and cigarette smoke</td>
</tr>
<tr>
<td></td>
<td>Best neutralizer of hydroxyl FRs</td>
</tr>
<tr>
<td>Selenium</td>
<td>Neutralizes FRs in the cytosol</td>
</tr>
</tbody>
</table>

Figure 1-3.3 Neutralization of Free Radicals
3.4 Examples of Free Radical Injury

Clinical Application

Free Radical Injury by Acetaminophen

Acetaminophen is normally metabolized by sulfation or glucoronidation. In cases of overdose, however, cytochrome P450 will cause the formation of N-acetyl-p-benzoquinonimine (NAPQI), which then causes diffuse chemical hepatitis. Liver cell necrosis initially occurs around zone III and may occur at otherwise nontoxic levels of acetaminophen usage in alcoholics. This produces a transient decrease in functional factor VII, which prolongs the prothrombin time. When used with nonsteroidal anti-inflammatories (NSAIDs), acetaminophen may result in renal papillary necrosis. Free radical injury of this sort is treated with N-acetylcysteine.

3.4.1 Reperfusion Injury
The combined effects of superoxide and Ca\(^{2+}\) cause damage.
- Irreversibly damaged myocytes are destroyed.
- Undamaged myocytes remain intact.

3.4.2 Retinopathy of Prematurity
Treatment of respiratory distress syndrome with \(O^2 > 50\%\) may result in blindness due to free radical synthesis.

3.4.3 Fenton Reaction Disorders
- Iron overload disorders: Hemochromatosis and hemosiderosis.
- Copper overload disorders: Wilson disease.
- Intracellular iron produces hydroxyl FR, which damages parenchymal cells.
- Examples: Cirrhosis, exocrine/endocrine pancreatic dysfunction.
Chapter 1 • Cellular Pathophysiology

4 Cellular Accumulations and Reversible Changes

A variety of materials caused by cellular injury can accumulate intracellularly.

4.1 Lipofuscin

Lipofuscin is a "wear and tear" pigment, an indigestible lipid derived from lipid peroxidation of cell membranes that results from free radical damage to tissue. When it occurs along with atrophy of an organ, lipofuscin accumulation is referred to as brown atrophy.

4.2 Triglycerides

Fatty changes occur in the liver, heart, and kidney due to cytosolic accumulation of triglycerides. The main causes of fatty changes include alcohol, malnutrition, and carbon tetrachloride.

- **Alcohol:**
 - Impairs mitochondrial function.
 - Increased production of NADH from alcohol metabolism accelerates conversion of DHAP to G3-P.

- **Protein malnutrition (kwashiorkor):** Increased mobilization of fatty acids from triglyceride stores in adipose tissue by hormone sensitive lipase.

- **Carbon tetrachloride (CCl₄):** Decreased synthesis of apoproteins.
4.3 Bilirubin

- **Hemolytic Jaundice**: Excessive destruction of red blood cells; *pre-hepatic*.
- **Hepatocellular Jaundice**: Associated with liver damage; *hepatic*.
- **Obstructive Jaundice**: Stone, cancer in biliary tract; *post-hepatic*.

Looking Ahead

For more on the three types of jaundice, see chapter 15, on "Hepatobiliary Pathology."
4.4 Hemosiderin
Iron is normally stored as a soluble product, ferritin, in bone marrow macrophages and hepatocytes. A small amount circulates in the serum.

4.4.1 Hemosiderosis
This is a systemic overload of hemosiderin deposits in macrophages with no tissue damage.

![Figure 1–4.4 Hemosiderin Deposits: Prussian Blue Stain](image)

4.4.2 Hemochromatosis
In extensive iron overload, hemosiderin deposits form intracellularly and in the interstitium, causing tissue dysfunction and scarring.

4.5 Calcium

4.5.1 Dystrophic Calcification
Dystrophic calcification is the deposition of calcium phosphate in necrotic tissue. It occurs in alcohol-induced chronic pancreatitis, senile aortic stenotic valves, atheromatous plaques, calcified aortic valves, and periventricular calcification of congenital CMV.

4.5.2 Metastatic Calcification
Metastatic calcification is the deposition of calcium phosphate in normal tissue due to increased calcium levels for any reason.

Manifestation Nephrocalcinosis of collecting duct interfering with the normal functioning of ADH resulting in nephrogenic diabetes insipidus.
- Primary hyperparathyroidism resulting in ↑serum Ca$^{2+}$.
- Chronic renal failure resulting in hyperphosphatemia ($↑$PO$_4$):
 - $↑$PO$_4$ drives calcium into normal tissue.
 - Normal function is to drive calcium into osteoid in bone.

![Figure 1–4.5 Dystrophic Calcification](image)
Cellular Responses to Stress

Cellular adaptations to stress can include hyperplasia (increase in cell number), hypertrophy (increase in cell size), atrophy (decrease in cell size), metaplasia (replacement of one cell type with another), or dysplasia (disordered cell growth).

5.1 Hyperplasia

Hyperplasia is an increase in the number of cells, resulting in increased organ size.

- Can be physiologic (e.g., breast tissue during pregnancy) or pathologic (e.g., endometrial hyperplasia)
- Pathologic hyperplasia is a soil for cancerous proliferation
- Mechanisms:
 - **Hormonal Stimulation:**
 - Benign prostatic hyperplasia: Dihydrotestosterone
 - Acromegaly: Growth hormone and insulin-like growth factor 1
 - **Antibody Stimulation:** Graves disease
 - **Mechanical Stimulation:** Epidermis from friction (Callus)
 - **Viral Stimulation:** Epidermal hyperplasia (Human papilloma virus)

Figure 1-5.1A Prostate Hyperplasia

Figure 1-5.1B Hyperplasia: Graves Disease Goiter
5.2 Hypertrophy

Hypertrophy is an increase in the size of cells.

- Increased number of intracellular organelles and cytosol
- Examples:
 - Cardiac myocyte hypertrophy in hypertension
 - Skeletal muscle in exercise
- No cellular proliferation, but induction of select genes and proteins
- Hyperplasia and hypertrophy can occur together (pregnant uterus) but, if cell cannot divide, then hypertrophy occurs alone
- Mechanisms:
 - Growth factor stimulation: Insulin-like growth factor-1
 - Neuroendocrine stimulation: Sympathetic stimulation
 - Ion channels: Calcium channel activity may induce calcineurin
 - Other chemical mediators: Nitric oxide (NO), angiotensin II, bradykinin
 - Oxygen supply: Increased functional demand on cells induces angiogenesis
 - Hypertrophy antagonist: Atrial and B-type natriuretic factors, high concentration of NO

![Figure 1-5.2 Hypertrophy](Image)
5.3 Atrophy

Atrophy is the decrease in the size and weight of an organ due to disuse, aging, or loss of nervous or hormonal input.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ Innervation/activity</td>
<td>Muscle atrophy in ALS, cast, skeletal muscle atrophy with lower motor neuron denervation</td>
</tr>
<tr>
<td>↓ Hormone stimulation</td>
<td>Hypopituitarism (target organs undergo atrophy), ovarian atrophy following loss of estrogen with menopause</td>
</tr>
<tr>
<td>↓ Nutrients</td>
<td>Marasmus: Total calorie deprivation</td>
</tr>
<tr>
<td>↓ Blood flow (atherosclerosis is the most common cause)</td>
<td>Cerebral atrophy: Loss of neurons in layers 3, 5, and 6</td>
</tr>
<tr>
<td>Occlusion secretory ducts in pancreas</td>
<td>Thick ductal secretions in cystic fibrosis: Dilation ducts, atrophy exocrine glands, possible compression atrophy</td>
</tr>
<tr>
<td>Ureteral obstruction</td>
<td>Compression atrophy of the cortex/medulla causing hydrenephrosis</td>
</tr>
</tbody>
</table>

▲ Figure 1-5.3 Cerebral Atrophy
5.4 Metaplasia

Metaplasia is the replacement of one adult cell type with another adult cell type. It arises due to re-programming of stem cells and has the possibility to transform to cancer.

Table 1–5.4 Causes of Metaplasia

<table>
<thead>
<tr>
<th>Cause</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid reflux</td>
<td>Barrett esophagus; distal esophagus epithelium has increase of goblet cells and mucus-secreting cells</td>
</tr>
<tr>
<td>Helicobacter pylori</td>
<td>Increase in goblet and paneth cells in antrum and pylorus</td>
</tr>
<tr>
<td>Smoking</td>
<td>Columnar ciliated epithelium in bronchus replaced with squamous epithelium</td>
</tr>
<tr>
<td>Schistosoma haematobium</td>
<td>Squamous metaplasia of bladder</td>
</tr>
</tbody>
</table>

5.5 Dysplasia

Dysplasia is disordered cell growth with loss of cellular uniformity and architectural orientation. It is a precursor to malignant transformation and may result from persistence of the stress that caused metaplasia or pathologic hyperplasia—a clinically noteworthy example would be dysplasia of cervical epithelium in HPV infection.
Chapter 1 • Cellular Pathophysiology

6 Cell Death (Necrosis)

If cells are incapable of adaptation to injury, cell death occurs. The patterns of necrosis are coagulative, liquefactive, caseous, fibrinoid, and fat.

6.1 Coagulative Necrosis

Coagulative necrosis is the result of infarction or ischemia of all tissues except the brain. This type of necrosis involves denaturation of proteins with cellular outlines preserved. Two forms of infarction may result in coagulative necrosis: *white (pale) infarcts* and *red infarcts*.

6.1.1 White (Pale) Infarct
- Solid organs (heart, kidney)
- Single blood supply

6.1.2 Red Infarct
- Hemorrhagic
- "Soft" organ (lung, intestines)
- Dual blood supply
- Also seen in reperfusion of infarct in solid organs

6.1.3 Dry Gangrene

Coagulation necrosis due to infarction.

▲ Figure 1–6.1A Coagulative Necrosis: Dry Gangrene Caused by Diabetes

▲ Figure 1–6.1B Coagulative Necrosis
6.1.4 Microscopic Appearance

- Intact architecture of cells
- Ghostly outline preserved
- Nuclei disintegrating/absent:
 - **Pyknosis**: Chromatin clumping and shrinking with increased basophilia
 - **Karyorrhexis**: Fragmentation of chromatin
 - **Karyolysis**: Fading of chromatin material

6.2 Liquefactive Necrosis

- Ischemic brain infarction or bacterial infection of any organ.
- Digestion of tissue by hydrolytic enzymes.
- Enzyme source:
 - *Neutrophils* in bacterial infections; e.g., abscess.
 - *Neuroglial cells* in brain infarction.
- Macroscopic morphology: Formation of a cystic cavity.
- *Wet gangrene* occurs when a bacterial infection is superimposed on dry gangrene and liquefactive necrosis results.
6.3 Caseous Necrosis

Caseous necrosis is a distinct form of coagulative necrosis that occurs when lipid is released following the granulomatous inflammation caused by tuberculosis and fungal infections.

- **Macroscopic morphology:** Granular, "cheese-like" material.
- **Microscopic morphology:**
 - Granuloma: Multinucleated giant cells are fused macrophages. Other nucleated cells are CD4 Th1 cells.
 - Central caseation occurs due to the action of macrophage enzymes on lipids from cell walls of *Mycobacteria* or systemic fungi.

Figure 1–6.3A Caseous Necrosis: Macroscopic Morphology

Figure 1–6.3B Caseous Necrosis: Microscopic Morphology

6.4 Fibrinoid Necrosis

Fibrinoid necrosis is limited to small muscular arteries, arterioles, venules, and glomerular capillaries. It results from the deposition of proteinaceous material in damaged vessel walls and is associated with immune vasculitis and malignant hypertension.
6.5 Fat Necrosis

6.5.1 Enzymatic
- Adipose tissue located around acute pancreatic inflammation can undergo enzymatic autodigestion by lipases.
- Released free fatty acids are saponified with calcium.

6.5.2 Traumatic
Injury to fatty tissue (e.g., breast) can result in fat necrosis that is not enzymatically mediated.

6.5.3 Morphology of Fat Necrosis
- Macroscopic: Chalky, whitish deposits surrounding the pancreas.
- Microscopic: Dense, inflammatory infiltrate surrounding digested tissues.
 - Residual fat cells
 - Basophilic calcified areas

6.6 Summary of Types of Necrosis

<table>
<thead>
<tr>
<th>Type</th>
<th>Mechanism of Cellular Change</th>
<th>Pathologic Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulative necrosis</td>
<td>Ischemia leading to denaturation of cellular proteins and cytoplasmic RNA—dry gangrene may result.</td>
<td>Cellular architecture preserved, except for nuclear changes.</td>
</tr>
<tr>
<td>Liquefactive necrosis</td>
<td>Enzymatic destruction of necrotic tissue, generally in CNS, due to ischemia or infection—wet gangrene may result.</td>
<td>Necrotic tissue soft and liquefied.</td>
</tr>
<tr>
<td>Caseous necrosis</td>
<td>Coagulation and liquefactive necrosis; tuberculous granulomas.</td>
<td>Structure lost, but tissue not liquefied; appearance resembles cheese.</td>
</tr>
<tr>
<td>Fibrinoid necrosis</td>
<td>Deposits of fibrin materials in walls of arteries.</td>
<td>Thick, pink rings in vascular walls; may not have true necrosis.</td>
</tr>
<tr>
<td>Fat necrosis</td>
<td>Digestion of pancreatic tissue by pancreatic enzymes.</td>
<td>Necrosis of fat cells, forming calcium soaps. Inflammation, hemorrhage.</td>
</tr>
</tbody>
</table>
Apoptosis is programmed, enzyme-mediated cell death. Both physiologic and pathologic processes are associated with apoptosis, which is activated by two possible mechanisms: an intrinsic pathway and an extrinsic pathway.

7.1 Characteristics of Apoptosis
- Cell degrades its own nuclear and cytoplasmic proteins
- Cell membrane does not break down
- Cell particles are phagocytosed
- No inflammation

7.2 Functions of Apoptosis

7.2.1 Physiologic
- Embryogenesis (loss of webs between digits)
- Hormone withdrawal (endometrium)
- Elimination of self-reactive T cells in thymus

7.2.2 Pathologic
- Viral infections (T cell induced)
- DNA damaged cells (p53 mechanism)

7.3 Pathways of Apoptotic Activation
The signal to initiate cellular apoptosis may originate inside the cell (intrinsic, mitochondrial) or outside the cell (extrinsic, death receptor initiated).
Chapter 1 • Cellular Pathophysiology

Mitochondrial (Intrinsic) Pathway
- Cell injury, DNA damage, misfolded proteins (e.g., prions), embryogenesis (MIS [müllerian inhibiting substance])
- Mitochondrial pathway
- Receptor-ligand interactions
 - Fas
 - TNF-α / TNFR1 receptor

Death Receptor (Extrinsic) Pathway
- Death receptor pathway
- Receptor-ligand interactions
- Fas
- TNF-α / TNFR1 receptor

Pathology
- Cellular injury, DNA damage, misfolded proteins (e.g., prions), embryogenesis (MIS [müllerian inhibiting substance])
- Mitochondrial pathway
- Receptor-ligand interactions
 - Fas
 - TNF-α / TNFR1 receptor

Figure 1–7.3A Pathways of Apoptosis
7.3.1 Intrinsic Pathway
- Cellular injury may result in growth factor withdrawal
 - Anti-apoptotic proteins not produced
 - Cytochrome c released
- Cytochrome c interacts with Apaf-1
 - \rightarrow Activation of caspase-9
 - \rightarrow Activation of downstream caspases
 - \rightarrow Enzymatic digestion of cell content

7.3.2 Extrinsic Pathway
- Mediated by receptors including FAS and TNF
- FAS-TNF receptor ligands signal a series of events, activating caspases
- Cytotoxic T cell activation: Granzyme B, a cytotoxic T cell protease, directly activates executioner caspases

Figure 1–7.3B Apoptotic Body
Overview of Inflammation

Inflammation is the term used to describe how blood vessels and immune cells react to injury, resulting in fluid and leukocytes accumulating in extravascular tissue. There are many steps in inflammation, including the release of fluid from vessels, the attraction of leukocytes, activation of chemical mediators (such as cytokines), the removal of debris, and the repair of damaged tissue. The two main players in the inflammatory system are antibodies and leukocytes.

1.1 Types of Inflammation

Inflammation can be divided into two types, based on cells involved, not the time-course of the reaction, although sometimes the two correlate. Acute inflammation primarily involves neutrophils. Chronic inflammation, on the other hand, tends to occur with more persistent insults and mostly involves lymphocytes and macrophages.

1.1.1 Overview of Acute Inflammation

The acute inflammatory response is an immediate response to any injury. It is considered a component of the innate immune response. It has the following characteristics:

- It onsets within minutes.
- It usually resolves within a few days.
- It may progress to chronic inflammation.

1.1.2 Overview of Chronic Inflammation

The chronic inflammatory response results from inflammation of long duration, often due to the persistence of the injurious stimulus. It has the following characteristics:

- It has slower onset (weeks to years).
- It has a longer time-course.
- It results in loss of functional tissue with repair by fibrosis.

USMLE® Key Concepts

For Step 1, you must be able to:

- Identify the histology of acute and chronic inflammation.
- Describe the chemical, cellular, and hemodynamic changes that result from acute and chronic inflammation.
- Explain the molecular origins of leukocyte function diseases such as leukocyte adhesion deficiency, Chédiak-Higashi syndrome, and chronic granulomatous disease.
1.2 Inflammatory Cells

1.2.1 Mast Cells and Basophils
Mast cells and basophils look and act similar and differentiate from a common CD34+ bone marrow precursor. Basophils, however, emerge fully mature from the bone marrow, whereas mast cells circulate in immature form before homing to a particular tissue. Both cells contain granules that are filled with histamine and heparin, and play a role in allergy, anaphylaxis, and as a defense against helminthic parasites. Basophils can be distinguished by their bilobed nuclei.

1.2.2 Neutrophils
Neutrophils are the first leukocytes to respond to injury and their influx will peak within five to six hours. Neutrophilia is particularly associated with bacterial infection and infarction. The major function of neutrophils is in phagocytosis and the release of microbicidal chemicals that contribute to the formation of abscesses.

1.2.3 Monocytes and Macrophages
Monocytes and macrophages typically appear in an inflammatory response two to three days after the injury. Both cells are highly phagocytic and play important roles in cleaning debris and infection from the area, but additionally, macrophages are important cytokine-secreting cells and antigen-presenting cells for the development of acquired immunity.
1.2.4 Lymphocytes
Lymphocytes come in two forms. Large lymphocytes include cells such as the natural killer cells, whereas the small lymphocytes consist of T and B cells. Natural killer cells belong to the innate immune response and protect against some viruses and malignancies. B and T lymphocytes are cells of the acquired immune response, and protect against virtually all other forms of pathogen.

1.2.5 Plasma Cells
Plasma cells are the end-cell of B lymphocyte differentiation. They are cellular factories of antibody synthesis and are found most frequently in the lymphoid follicles of the lymph nodes and spleen.

1.2.6 Eosinophils
Eosinophils are associated with allergic and parasitic infections. They are attracted to inflammatory foci by the release of the granular contents of mast cells and basophils. They release a major basic protein that is toxic to the cuticle of helminthic parasites.

Mnemonic for conditions in which eosinophils will be seen:
NAACP
N = Neoplasia
A = Allergies
A = Asthma
C = Collagen vascular disease
P = Parasites
The Process of Acute Inflammation

Acute inflammation is really just an early response to injury of any kind. The end goal of acute inflammation is to get white blood cells into the extravascular space to help limit the damage and allow the tissue to repair. There are three main components of acute inflammation:

- **Vasodilation**: Increases blood flow to the affected tissue.
- **Endothelial Cell Disruption**: Allows the contents of the blood to exit blood vessels.
- **Leukocyte Margination and Diapedesis**: Allows white blood cells to exit the blood vessel.

The result of these vascular and chemical responses is the production of the five cardinal signs of acute inflammation:

- **Rubor**: Redness
- **Tumor**: Swelling
- **Calor**: Heat
- **Dolor**: Pain
- **Functio Laesa**: Loss of function

Clinical Application

The Buildup of Interstitial Fluids

Edema: An increase in interstitial fluid.

Anasarca: An extreme form of generalized edema that is characterized by widespread swelling of the skin. It usually only occurs in response to liver or renal failure/disease, though some medications can also induce anasarca.

Exudate: A form of interstitial fluid with a very high protein concentration; in essence, exudates form when cells and proteins are able to migrate out of the blood vessels and the fluid then follows these cells and proteins via osmosis. As the proteins and cells break down, they generate a lot of cellular debris. One of the hallmarks of an exudate is a *high specific gravity and high protein content*.

Pus: An exudate that is filled with neutrophils and other debris.

Transudate: A form of interstitial fluid marked by *low specific gravity and low protein content*. Transudate forms when fluid is squeezed out of the blood vessels due to some hydrostatic imbalance—thus, it is essentially a filtered form of plasma.
2.1 The Components of Acute Inflammation

2.1.1 Vasoactive Changes
- Transient initial vasoconstriction of arterioles is neurogenic.
- Massive vasodilation follows, due to histamine and nitric oxide which relax vascular smooth muscle.
- Increased blood flow increases hydrostatic pressure.

2.1.2 Increased Capillary Permeability
- Increased capillary permeability releases a transudate into the interstitium:
 - Chemical mediators of permeability include:
 - Vasoactive amines (histamine, serotonin)
 - Bradykinin from the kinin cascade
 - Leukotrienes (LTC4, LTD4, LTE4)
 - Cellular contributors to permeability include:
 - Endothelial cell and pericyte contraction
 - Direct endothelial cell injury
- The outflow of fluid surpasses lymphatic drainage ability.
- Blood stasis due to increased viscosity allows leukocyte margination.

2.1.3 Leukocyte Emigration
The process by which leukocytes leave the blood occurs in four steps:

1. Margination: Leukocytes move toward the walls of the blood vessels, a process known as margination.

2. Rolling: In this stage, leukocytes actually attach loosely to newly expressed selectin molecules on the endothelial cells and gradually decelerate.
 - Selectins: A group of adhesive proteins on the surface of the endothelium that play a key role in leukocyte rolling. The two main selectins are E and P selectins, which bind to oligosaccharide motifs (such as sialyl-Lewis-X) on the leukocytes. Selectins are redistributed on the endothelium by chemicals such as histamine and thrombin, and inflammatory mediators such as IL-1 and TNF.
 - Activation by Chemokines: The binding of leukocytes to endothelial selectins allows them to become activated by chemokines diffusing from the focus of injury. This activation causes a change in configuration of a second set of adhesion molecules on the surface of the leukocyte known as integrins. An example of this activation would be an important interaction of chemokines such as C5a and LTB4 activating neutrophilic integrins. Important clinical associations of integrins include CD11a:CD18, and CD11b:CD18.

3. Adhesion: Tight adhesion of leukocytes is mediated by the endothelial molecules ICAM-1 and VCAM-1 binding to complementary activated integrins on the surface of the leukocytes. This stops the leukocytes in the circulation and allows them time to extend their pseudopodia and move through the endothelium into the area of injury.

Clinical Application

Leukocyte Adhesion Deficiency is a set of autosomal recessive disorders in which leukocyte diapedesis is defective. LAD type 1 is a deficiency of CD11a:CD18, and LAD type 2 is a deficiency of a selectin which binds neutrophils. Clinical findings include delayed separation of the umbilical cord, extreme gingivitis, poor wound healing, and peripheral leukocytosis.
4. **Transmigration**: This is the last step in delivering leukocytes to the areas of infection. There are two phases: Crossing over the vessel walls and then traveling to area of infection or injury.

- **Diapedesis**: The technical term for the leukocyte transmigration across the endothelium. CD31 (PECAM-1; platelet endothelial cell adhesion molecule) plays a major role in this movement. Neutrophils dissolve the basement membrane and enter the interstitium.

- **Chemotaxis**: The movement of leukocytes along a chemical gradient toward the area of infection/injury. This movement can be mediated by both exogenous agents (such as bacterial products) or by endogenously produced chemicals (C5a, LTB4, and cytokines such as IL-8). Binding causes the release of calcium, which increases neutrophil motility. Chemotaxis can be measured by the Boyden chamber technique.

<table>
<thead>
<tr>
<th>Table 2–2.1 Chemotaxins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotaxin</td>
</tr>
<tr>
<td>Leukotriene B4</td>
</tr>
<tr>
<td>Interleukin-8</td>
</tr>
<tr>
<td>C5a</td>
</tr>
<tr>
<td>Formyl methionyl peptides</td>
</tr>
<tr>
<td>Fibrinopeptides</td>
</tr>
</tbody>
</table>

Connection to Microbiology

Endotoxin enhances activation of adhesion molecules and, therefore, removes leukocytes from the circulating pool.

Connection to Pharmacology

Catecholamines, corticosteroids, and lithium inhibit activation of adhesion molecules.
2.2 Phagocytosis

Phagocytosis is the process by which phagocytes remove the cellular debris that remains after injury.

2.2.1 Steps of Phagocytosis

The first step of phagocytosis is recognition and attachment, which may occur via TLR receptors and be enhanced by opsonization with IgG and C3b. The debris is engulfed into vesicles called phagosomes, which are then fused with lysosomes to produce phagolysosomes. Inside the phagolysosome there are two different mechanisms by which the digestion can occur. The most efficient is the oxygen-dependent system, which begins with the formation of hydrogen peroxide by NADPH oxidase. Next, myeloperoxidase (along with a halide such as chloride) converts hydrogen peroxide to hypochlorite. Oxygen-independent killing is much less effective and mediated by enzymes such as lysozyme.

▲ Figure 2–2.2 Mechanisms of Intracellular Killing
2.3 Chemical Mediators
The chemical mediators of inflammation originate from plasma, leukocytes, or other cells.

2.3.1 Vasoactive Amines
Two of the key chemical mediators of inflammation are known as vasoactive amines—this is because they are either derived from amino acids or are amino acids themselves.

- **Histamine**: Increases capillary permeability.
 - Released by mast cells and basophils when IgE molecules on their membranes are cross-linked by antigen.
 - Released by platelets in a platelet aggregation and release response that can be triggered by endothelial injury, thrombosis, or the presence of platelet-activating factor.

- **Serotonin**: Increases capillary permeability, but is much more potent. It is found in platelets and is released with platelet aggregation.

2.3.2 Arachidonic Acid Cascade
Arachidonic acid is another chemical mediator that is active in inflammation by itself and via its metabolites. It is released from membrane phospholipids by phospholipase A2. Arachidonic acid is metabolized via the cyclooxygenase or the lipoxygenase pathways.

Important Concept
It’s key to distinguish phospholipase A2 from phospholipase C, part of the G_c-calcium second messenger cascade. Link the “c” in calcium with phospholipase C. The complex “A2” represents the two branches seen with the arachidonic acid pathway.

![Figure 2-2.3A Arachidonic Acid Cascade](https://example.com/figure.png)
Chapter 2 • The Inflammatory Reaction

- **Cyclooxygenase Pathway**
 - Uses the proteins COX1 and COX2, breaks arachidonic acid into *thromboxanes and prostaglandins.*
 - Thromboxane A2 causes *vasoconstriction and platelet aggregation.*
 - Prostaglandins cause *vasodilation and inhibition of platelet aggregation.*
 - The cyclooxygenase pathway is inhibited by NSAIDs, aspirin, and COX-inhibitors.
- **Lipoxygenase:** This pathway metabolizes arachidonic acid into leukotrienes.
 - A4 and B4 cause *vasodilation* and inflammation.
 - C4, D4, and E4 cause *bronchoconstriction and vasoconstriction.*
 - One treatment used for asthma is leukotriene inhibitors.
- **Lipoxins**
 - Formed from platelets and neutrophils.
 - Promote resolution of inflammation.

2.3.3 Nitric Oxide
- Produced by macrophages and endothelial cells.
- Produced during conversion of arginine to citrulline by NO synthase.
- Causes vasodilation, decreased leukocyte adhesion, and reduced platelet adhesion. Has microbicidal activities.

2.3.4 Cytokines
Soluble proteins secreted by inflammatory cells—IL-1 and TNF are secreted by monocytes and macrophages and produce the *acute-phase response,* a response to inflammation that involves fever, malaise, increased sleep, neutrophilia, and decreased appetite.
2.3.5 Complement

A set of plasma proteins that assist in the lysis of cells in addition to mediating inflammation, phagocytosis, and lysis of microbes.

- There are three pathways to generate the complement cascade from a set of zymogenic serum precursors: classical, alternative, and lectin.
- All pathways generate split products which attract inflammatory cells (C3a, C4a, C5a), encourage opsonization (C3b), and generate membrane lysis (C5-9; membrane attack complex).

![Figure 2-2.3B Complement Split Products](image-url)
2.3.6 Coagulation Cascade

1. **Kinin Cascade**: The kinin cascade is activated by factor XIIa (also known as Hageman factor) of the coagulation cascade. This causes high molecular weight kininogen to be converted into bradykinin. Bradykinin is a 9 amino-acid peptide that mediates vascular permeability, dilation of the arterioles, and pain.

2. **Complement Activation**

3. **Thrombin**: (Factor IIa) formation

4. **Fibrinolytic System**
2.4 Defects in Acute Inflammatory Response

2.4.1 Defects of the Complement Cascade

- Defects of complement activation
- Defects of complement regulation

Clinical Application

Complement Cascade Pathologies

Deficiencies of Complement Activation Complement deficiencies result in a decreased concentration or functioning of one or more of the components of the complement system. These can cause increased susceptibility to infections, which tend to manifest on the milder side.

- **Defective Formation of MAC:** Patients unable to form an effective membrane attack complex have an increased risk of *Neisseria* bacteremias.

Deficiencies in Complement Regulation

- **Hereditary Angioedema—C1 inhibitor (C1INH) deficiency:** There are inhibitors of complement activation at the level of C1, C3, and C5. Deficiency of the inhibitor of C1 binding causes hereditary angioedema. A deficiency of C1INH causes overactivation of the kinin system, resulting in massive edema due to increased vascular permeability.

- **Paroxysmal Nocturnal Hemoglobinuria—Decay-accelerating factor (DAF) deficiency:** DAF is a protein found on the surface of cells that destroys the C3 convertase protein, preventing the activation of C3. A lack of DAF as well as another inhibitor, called *membrane inhibitor of reactive lysis* (MIRL), which inhibits the formation of the membrane attack complex, causes a disease known as *paroxysmal nocturnal hemoglobinuria*.

2.4.2 Defects in Neutrophils

Neutrophilic defects can be due to low neutrophil levels, neutropenia, or impaired neutrophil function, as can be seen with leukocyte adhesion deficiencies and other genetic disorders. Because of the central role of neutrophils in fighting disease, these problems can cause significant susceptibility to infection from extracellular pathogens.

Looking Ahead

Paroxysmal Nocturnal Hemoglobinuria is covered more extensively in chapter 6.
Chronic Granulomatous Disease
- Defect in NADPH oxidase, which prevents the formation of oxygen radicals and hydrogen peroxide (the substrate for myeloperoxidase).
- Catalase positive microbes destroy their own metabolic catalase and therefore cannot be killed by the myeloperoxidase; both oxygen-dependent mechanisms become nonfunctional.

Myeloperoxidase Deficiency
- Generally asymptomatic or, at most, an increased susceptibility to *Candida* infections.
- As long as one of the two oxygen-dependent mechanisms is functional, the case will be subclinical.

Chédiak–Higashi Syndrome (CHS)
- Autosomal recessive disorder that affects microtubule formation so lysosomal enzymes cannot be transferred into phagocytic vesicles.
- Affects melanocytes (causing albinism) and the cells of the nervous system (resulting in peripheral neuropathy).
- Results in neutropenia, defective granulation, and delayed killing of microbes. Large cytoplasmic vacuoles appear in phagocytes and natural killer cells as defective granules accumulate.

Pathology

Staph 'N Enterobacteriaceae Are Listed Catalase Positive:
- *Staphylococcus*
- *Nocardia*
- *Enterobacteriaceae*
- *Aspergillus*
- *Listeria*
- *Candida*
- *Pseudomonas*
Chronic Inflammation

When the acute inflammatory response is insufficient to remove or heal an injury, progression to chronic inflammation may occur.

3.1 Causes of Chronic Inflammation
In general, chronic inflammation results from the persistence of injury or infection:
- **Infections**: Tuberculosis, leprosy, hepatitis C
- **Autoimmune Disease**: Rheumatoid arthritis, Crohn disease
- **Foreign Sterile Agents**: Breast implants, silica, uric acid

3.2 Morphology of Chronic Inflammation
Chronic inflammation occurs when there is simultaneous tissue damage due to active inflammation coupled with attempts at tissue repair. Chronic inflammation has a somewhat different inflammatory cell profile than acute inflammation.

3.2.1 Mononuclear Cell Infiltration
The main inflammatory cells involved in chronic inflammation are mononuclear cells. These include lymphocytes, macrophages, and plasma cells.

3.2.2 Tissue Destruction and Fibrosis
Ultimately, chronic inflammation can cause permanent tissue damage and resulting fibrosis.

3.2.3 Granulomatous Inflammation
A possible consequence of chronic inflammation, a granuloma, which possesses a unique cellular profile.

- **Macrophages**: These are the predominant cell found in granulomatous inflammation. They are transformed into epithelioid cells and are also called *epithelioid* histiocytes because of their epithelial appearance and highly secretory activity. This transformation is induced by the cytokines of Th1 lymphocytes, which serve as the organizer of the lesion through secretion of IFN-γ.

- **Caseating vs. Non-caseating**: The two main forms of granulomas are *caseating* and *non-caseating*. Caseating granulomas have areas of central, "cheesy" necrosis, which results from the growth of the lesion beyond the capacity of the blood supply.

- **Granuloma Triggers**: Chronic infection or the presence of foreign bodies triggers granuloma formation.
Overview of Regeneration and Repair

When cells and tissues are injured, recovery is accomplished via regeneration or repair. Regeneration requires replicative cells to replace dead cells, and repair involves the deposition of collagen, new connective tissue, and scar formation.

2.1 The Cell Cycle and Cell Types

- **Labile Cells**: Regenerate perpetually
 - Stem cells: Embryonic and adult
 - Bone marrow cells
 - Surface epithelial cells
 - Intestinal crypts
- **Stable (Quiescent) Cells**: Divide if stimulated (TNF-α and IL-6 important for G0/G1 transition)
 - Hepatocytes
 - Endothelium
 - Renal tubular cells
- **Permanent Cells**: Unable to divide
 - Neurons
 - Cardiac myocytes

![Figure 3-2.1 Cell Cycle](image)
2.2 Growth and Regeneration Signals

2.2.1 Platelet-Derived Growth Factor (PDGF)
- Produced by many cells, especially platelets.
- Attracts and causes fibroblasts and smooth muscle cells to proliferate.

2.2.2 Epidermal Growth Factor (EGF)
This is a progression factor for endothelial cells and fibroblasts.

2.2.3 Fibroblast Growth Factor (FGF)
- Promotes synthesis of extracellular matrix proteins.
- Attracts fibroblasts and endothelial cell.

2.2.4 Transforming Growth Factor (TGF)
- TGF-α is like EGF.
- TGF-β is a growth inhibitor.

2.2.5 Vascular Endothelial Growth Factor (VEGF)
Stimulates angiogenesis, the formation of new blood vessels from existing vessels.

▲ Figure 3–2.2 Growth and Regeneration Signals
2.3 Fibrosis and Remodeling

When injury is severe or persistent, the damaged area must be replaced with a connective tissue scar. If the damage is such that there is loss of the basement membrane and its accompanying connective tissue infrastructure, then full regeneration of function is not possible.

Steps in repair include:

- Neutrophils transmigrate to liquefy injured tissue, and macrophages transmigrate to remove debris.
- **Granulation tissue** composed of fibroblasts and angiogenesis accumulates in the extracellular matrix.
- Fibroblasts produce type III collagen initially.
- Remodeling by metalloproteinases (collagenases) replaces type III collagen with type I collagen, increases tensile strength of tissue to approximately 80% of the original tissue.
Types of Wound Healing

Wound healing is defined as occurring via primary intention (primary union) when wound edges are closely approximated and the process results in a minimal scar. Wound healing by second intention (second union) occurs when wounds are larger or the ends of the wound are not in contact.

3.1 Healing by Primary Intention

Day 1:
- Fibrin clot (hematoma)
- Neutrophils infiltrate

Day 2:
- Squamous cells seal off wound
- Macrophages emigrate into wound

Day 3:
- Granulation tissue begins to form
- Initial deposition of type III collagen
- Macrophages replace neutrophils

Days 4–6:
- Peak granulation tissue formation
- Fibronectin key glycoprotein

Week 2:
- Tensile strength ~10%

Month 1:
- Remodeling of wound (collagenase/lysyl oxidase)
- Tensile strength ~80% in 3 months

Figure 3–3.1 Healing by Primary Intention
3.2 Healing by Second Intention

Wounds that are more extensive result in more intense inflammatory reactions and more granulation tissue production. Myofibroblasts will cause wound contraction and more significant residual scarring.

- Increased deposition of granulation tissue along with myofibroblasts arriving

- Angiogenic factors such as VEGF arriving to increase blood supply to the injured area

- Increased deposition of collagen leads to the formation of scar tissue and thus wound contraction

Figure 3-3.2 Healing by Secondary Intention

Clinical Application

Conditions Causing Delayed Wound Healing

- Persistent infection (e.g., *Staphylococcus aureus*)
- Metabolic disorders (e.g., diabetes mellitus may cause ischemia and raise tissue levels of glucose, creating an ideal environment for infections)
- Nutritional factors:
 - Kwashiorkor resulting from severe protein malnutrition
 - Vitamin C deficiency resulting in decreased cross-linking of tropocollagen and reduction of tensile strength
 - Trace metal deficiencies
 - Copper deficiency leads to decreased cross-linking in collagen
 - Zinc deficiency results in decreased metalloproteinase activity and remodeling

Connection to Pharmacology

- Glucocorticoids interfere with collagen formation and decrease tensile strength, so they are used clinically to prevent excessive scar formation.
- Dexamethasone and antibiotics are used to prevent granulation tissue and scar formation in bacterial meningitis.
Extracellular Matrix

An extracellular matrix is a locally secreted network of structural molecules that consists of:

- **Interstitial Matrix**
 - Fibrillar collagens
 - Proteoglycans
 - Hyaluronic acids

- **Basement Membrane**
 - Collagen IV
 - Laminin

▲Figure 3-4.0 Extracellular Matrix: Collagen
Table 3–4.0 Collagen Types

<table>
<thead>
<tr>
<th>Group</th>
<th>Type</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrillar</td>
<td>I</td>
<td>Hard (bone and cartilage) and soft tissues (skin)</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Cartilage</td>
</tr>
<tr>
<td></td>
<td>III and V</td>
<td>Vessels and skin</td>
</tr>
<tr>
<td>Basement membrane</td>
<td>IV</td>
<td>Basement membranes</td>
</tr>
</tbody>
</table>

Clinical Application

Vitamin C Deficiency (Scurvy)

- Children: Hemorrhage (purpura and ecchymoses), joint space bleeding, and bone disease
- Adults: Hemorrhage and healing defects

Connection to Biochemistry

Collagen

- Triple helix of three polypeptide alpha chains with gly-x-y repeats.
- Collagen chains produced in the cell form triple helix called procollagen.
- Procollagen secreted from the cell and cross-linked to form collagen.
- Vitamin C activates prolyl and lysyl hydroxylases from inactive precursors, which then hydroxylate procollagen, providing strength.
Normal vascular hemostasis results from the action of carefully regulated processes that maintain the blood as a clot-free fluid in normal vessels and yet allow the formation of a rapid hemostatic plug at a site of injury. The pathologic consequence of hemostasis is referred to as thrombosis.

1.1 Contributors to Hemostasis
- Endothelium
- Clotting cascade
- Platelets

USMLE® Key Concepts

For Step 1, you must be able to:
- Describe the physiologic mechanisms controlling hemostasis.
- Explain the causes of thrombosis (Virchow triad) and its sequela (embolism and infarction).
- Diagnose and describe the molecular basis of the diseases of hypercoagulability.
- Identify the types of emboli and their pathologic sequelae.
- Diagnose cases of hyperemia, congestion, and edema.
1.2 Antithrombotic Activities of Endothelial Cells

- Produce heparin-like molecules that bind and activate antithrombin III, which neutralizes thrombin (factor IIa) and coagulation factors IXa and Xa.
- Produce tissue plasminogen activator (t-PA).
- Inactivate and remove thrombin.
- Synthesize thrombomodulin, which activates protein C.
- Synthesize protein S, PGI₂, and nitric oxide.

▲ Figure 4-1.2 Antithrombotic Activities of Endothelial Cells
Hemodynamic Dysfunction

Disturbances of the delicate balance of vascular hemostasis can result in thrombosis, embolism, infarction, hyperemia, congestion, edema, and shock.

2.1 Thrombosis

Trauma and inflammation of endothelial cells often begin the process of thrombosis, or intravascular coagulation of blood. Thrombogenesis can result from the activity of three possible stimuli (Virchow triad): endothelial injury, hypercoagulability, and abnormal blood flow.

![Figure 4-2.1A Thrombogenesis](image)

2.1.1 Endothelial Injury

Causes of endothelial injury include:

- Hypertension
- Turbulent flow over scarred valves
- *Bacterial endotoxins*
- Homocystinuria
- Hypercholesterolemia
- Radiation
- Cigarette smoke chemicals

The Function of Platelets Platelets contribute to thrombogenesis through a three-step process involving adhesion, the release reaction, and aggregation.
Platelet Adhesion

- Vascular endothelial damage exposes subendothelial collagen causing platelet *adhesion* to the surface.
- *Von Willebrand factor* mediates the interaction between platelet surface glycoprotein receptors (*GPIb*) and subendothelial collagen.

![Figure 4-2.1B Platelet Adhesion](image)

The Release Reaction: Once platelets are fixed to the subendothelial collagen, platelets release.

- **Dense Granules**
 - Adenosine diphosphate (ADP)
 - Serotonin
 - Calcium and magnesium
 - Cyclooxygenase

- **Alpha Granules**
 - Hemostatic factors (Factor V, plasminogen activator inhibitor 1, von Willebrand Factor, fibrinogen)
 - Angiogenic factors (vascular endothelial growth factor)
 - Anti-angiogenic factors (platelet factor 4)
 - High molecular weight kininogen (HMWK)
 - Platelet-derived growth factor
 - Fibroblast growth factor
Aggregation: Substances secreted during the release reaction cause platelets to stick together, forming the primary platelet plug. Aggregation is facilitated by the glycoprotein IIb-IIIa complex on the surface of platelets.

- Binds fibrinogen and links platelets
- Fibrinogen bridges stabilize the platelet plug
- Controlled by the **arachidonic acid cascade:**
 - Platelet phospholipase produces arachidonic acid through the cyclooxygenase pathway, which produces thromboxane A$_2$ (TxA$_2$).
 - Platelet TxA$_2$ constricts blood vessels and causes platelet aggregation.
 - Endothelial prostacyclin (PGI$_2$) blocks platelet TxA$_2$ and limits further platelet aggregation.

- Other stimuli for platelet aggregation:
 - Thrombin
 - Platelet-activating factor (PAF)
 - ADP
 - Collagen
 - Epinephrine

Aspirin

The production of thromboxane A$_2$ via the conversion of arachidonic acid by the enzyme cyclooxygenase-1 is inhibited by low-dose aspirin for the entire life span of the platelet, which is about 7 to 10 days.
Figure 4-2.1E Primary Hemostasis

Other Functions of Platelets
- Activation of arachidonic acid metabolism.
- Activation of the coagulation cascade, which enhances the primary hemostatic plug (platelets).
- Platelets expose a phospholipid complex, which activates the intrinsic coagulation cascade, producing thrombin.
- Thrombin converts fibrinogen to fibrin.
- Fibrin polymerization forms the secondary platelet plug.

Pathways of the Coagulation Cascade There are two major pathways of activation of the coagulation cascade: The extrinsic system, which begins with tissue thromboplastin activating factor VII; and the intrinsic system, which begins with the activation of factors IX, XI, or XII by HMWK or collagen. Both pathways feed together at the level of factor X to finally produce the fibrin clot.
Two Pathways:
- Extrinsic system (factor VII)
- Intrinsic system (factors XII, XI, IX, VIII)

Extrinsic System

- Tissue thromboplastin
- VII → VIIa
- Final common pathway: factor X to fibrin clot
- V + Xa + PF3 + Ca2+
- "Prothrombin complex"
- Prothrombin (II) → Thrombin (enzyme)
- Fibrinogen (I) → Fibrin monomer + fibrinopeptides A + B
- Fibrin monomers aggregate
- Soluble fibrin
- Cross-linked insoluble fibrin
- Thrombin

Intrinsic System

- HMWK, collagen
- XII → XIIa
- Activates plasminogen
- XI → XIa
- Activates kininogen system
- IX → IXa
- VIII + IXa + PF3 + Ca2+

Extrinsic Pathway
- The extrinsic pathway of coagulation begins when factor VII is converted to factor VIIa by tissue thromboplastin (tissue factor).
- Factor VIIa converts factor X to Xa and converts factor IX to factor IXa.
- Factor Xa then converts prothrombin (factor II) to thrombin (factor IIa).
- Factor Va is a cofactor required in the conversion of prothrombin to thrombin.
- Thrombin converts fibrinogen to fibrin.
- Cleavage of fibrinogen creates a fibrin monomer, which is stabilized by factor XIII, and forms a fibrin clot.
- The laboratory test of the extrinsic pathway is prothrombin time (PT).
- This measures factors II, V, VII, X, and fibrinogen.
Intrinsic Pathway

- The intrinsic pathway of coagulation involves the activation of all clotting factors, except factors VII (extrinsic pathway) and XIII (common pathway).
- Factor XII (Hageman factor) is activated by:
 - Exposed subendothelial collagen
 - High molecular weight kininogen (HMWK)
- It may also be initiated by factor VIIa (from the extrinsic pathway), activating factor IX to IXa.
- Factor IXa leads to the conversion of factor X to factor Xa, catalyzed by factor VIIIa.
- The intrinsic pathway also is activated by the platelet phospholipid complex.
- The laboratory test of the intrinsic pathway is partial thromboplastin time (PTT).
- This measures factors II, V, VIII, IX, X, XI, XII, and fibrinogen.

Fibrinolysis Lysis of the vascular thrombus, which restores blood flow in occluded vessels.

- Plasminogen (a proenzyme) is converted to plasmin, a fibrinolytic protease. Plasmin then splits fibrin.
- The conversion of factor XII to XIIa initiates the fibrinolytic, coagulation, complement, and kinin systems.

Lab Tests for Bleeding Dyscrasias

- Platelets
 - Bleeding time
 - Platelet count

- Coagulation Proteins
 - PTT (intrinsic pathway; used to monitor heparin therapy)
 - PT (extrinsic pathway; used to monitor warfarin therapy)

- Fibrinolytic System: Fibrin split products (D-dimers)
Clinical Application

Table 4-2.1A Use of Bleeding Parameters in Diagnosis

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Platelet Count</th>
<th>Bleeding Time</th>
<th>PT</th>
<th>PTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>↓</td>
<td>↑</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>VWD</td>
<td>Normal</td>
<td>↑</td>
<td>Normal</td>
<td>↑</td>
</tr>
<tr>
<td>Hemophilia A</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>↑</td>
</tr>
<tr>
<td>DIC</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Warfarin/heparin</td>
<td>Normal</td>
<td>Normal</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Table 4-2.1B Diagnostic Parameters of Bleeding

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Platelet Dysfunction</th>
<th>Coagulation Factor Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bleeding superficial scratches</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Petechia</td>
<td>Yes (only thrombocytopenia, not aspirin)</td>
<td>No</td>
</tr>
<tr>
<td>Late rebleeding</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hemarthroses</td>
<td>No</td>
<td>Yes (only very severe factor deficiencies)</td>
</tr>
<tr>
<td>Epistaxis, menorrhagia, GI/GU bleeding, hematuria, easy bruising</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ecchymoses/purpura</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
3 Diseases of Hypercoagulability

3.1 Primary Thrombophilia
Primary hypercoagulable states generally result from mutations affecting the factor V, prothrombin genes.

3.1.1 Hereditary Thrombophilia
- Prothrombotic familial syndrome in young women.

3.1.2 Factor V Leiden
- Mutation resulting in substitution of glutamine for normal arginine at position 506.
- Renders activated factor V protein resistant to cleavage by protein C.
- Most common cause of hereditary thrombophilia.

3.1.3 Prothrombin 20210A
- G-to-A mutation in the 3'-untranslated region of prothrombin gene.
- Second most common cause of hereditary thrombophilia.

3.2 Secondary Hypercoagulability
Many diseases that affect blood flow or stasis will result in secondary increases in the coagulatory cascades.

3.2.1 Oral Contraceptive Use and Pregnancy
- Increased synthesis of coagulation factors.
- Reduced synthesis of antithrombin III.
3.2.2 Cancer
Cancer creates tumor products that can lead to thrombosis.

3.2.3 Advancing Age
- Increased platelet aggregation.
- Reduced endothelial PGI$_2$ release.

3.2.4 Smoking and Obesity
The association of hypercoagulability with smoking and obesity is suspected but not yet clinically confirmed.

3.2.5 Antiphospholipid Antibody Syndrome
- Prothrombotic disorder with autoantibodies against protein antigens complexed to phospholipids.
- Clinical Features:
 - Recurrent venous and arterial thromboembolism, fetal loss, thrombocytopenia, and neurologic manifestations.
 - Paradoxical prolonged PTT; still treat with coumadin.
 - False positive test for syphilis (antigens in test are bound to cardiolipin).
 - Sometimes associated with SLE (hence, also referred to as lupus anticoagulant).

3.3 Abnormal Blood Flow
The final contributor to the Virchow triad is disturbance of blood flow. Stasis and turbulence are alterations in normal blood flow that contribute to thrombus formation. Causes include:
- Ulcerated atherosclerotic plaques
- Aneurysms (cause local stasis)
- Myocardial infarctions
- Mitral valve stenosis
- Atrial fibrillation
- Polycythemia
- Sickle cell anemia
A thrombus is an intravascular clot composed of coagulation factors, erythrocytes, and platelets that is attached to the vessel wall. Thrombi may develop in arteries or veins. Thrombi are formed in flowing blood (in vivo) and will develop with alternating layers of light and dark (lines of Zahn). The pale layers consist of platelets and fibrin, and the darker layers consist of RBC and fibrin.

4.1 Arterial or Cardiac Thrombi
Thrombi of this sort develop due to endothelial injury or turbulence and tend to grow "backward."

4.2 Venous Thrombi
These thrombi tend to develop at sites of stasis and grow "forward."

▲Figure 4-4.2 Arterial Thrombus
Emboli

An embolus is a detached mass that travels through the vasculature to a distant site where it eventually becomes trapped. Most emboli are formed when thrombi on vascular walls detach and are washed downstream, where they lodge and block blood flow. Emboli may be arterial (from mural thrombi), pulmonary (from venous thrombosis), or due to bubbles of gas, fat, or amniotic fluid.

5.1 Arterial Emboli
- Arterial emboli generally develop from detached mural thrombi from the heart or a large vessel. Common causes include:
 - Atrial fibrillation
 - Status post infarction
- Common arterial emboli scenarios:
 - Carotid artery and infarct of middle cerebral artery
 - Mesenteric artery and hemorrhagic infarct of the intestinal tract
 - Renal artery and pale wedge infarct of renal cortex

5.2 Pulmonary Emboli
- Immobilization and venous stasis lead to venous thrombosis in the lower extremities.
- Portions of the thrombus break away, travel through the venous circulation, and lodge in branches of the pulmonary artery.
- These frequently occur in immobilized hospitalized patients.
- Saddle emboli can obstruct the pulmonary artery and cause sudden death.

5.3 Gas Emboli
These emboli, the cause of decompression sickness, are the result of nitrogen gas dissolving in tissue under pressure. Rapid ascent causes nitrogen bubbles to form in vessels and tissue, producing ischemic damage.

5.4 Fat Emboli
Trauma releases fat from bone marrow and globules of fat block the microvasculature of brain, lungs, and kidneys.

5.5 Amniotic Fluid Emboli
Tears in placental membranes or uterine veins can infuse amniotic fluid into the maternal circulation. Fetal squames/vernix may be found in the maternal pulmonary circulation. Amniotic fluid emboli carry 60% to 80% maternal mortality rates.
An infarction is an area of ischemic necrosis caused by occlusion of the arterial or venous system, usually due to thrombotic or ischemic events.

6.1 Red Infarct (Hemorrhagic Infarct)
Tissues with overlapping circulation:
- Typically in lung, liver, and GI tract—redundant blood supplies.
- Arterial occlusion with cell death, followed by perfusion from overlapping circulation.
- Venous occlusions.
- Loose tissues (blood collects).
- Often wedge-shaped.

6.2 White Infarct
- Anemic infarct.
- Solid tissue with occlusion of single blood supply.
- Classic example of ischemic coagulative necrosis.
Hyperemia, Congestion, and Edema

7.1 Hyperemia
Hyperemia is an active process whereby increased blood flow into an area results from arteriolar dilation. It occurs during inflammation and exercise. The affected tissue will be red with oxygenated blood.

7.2 Congestion
Congestion is a passive process whereby impaired venous return from the tissues prevents normal perfusion of the tissue. It happens systemically in cardiac failure or locally when there is isolated venous obstruction. The tissue will be blue (cyanotic).
Edema is defined as the presence of increased fluid in the interstitial spaces. Anasarca refers to generalized edema, and ascites refers to edema of the peritoneal cavity.

7.3.1 Types of Edema Fluid
- Transudate
- Exudate
- Lymphedema
- Myxedema

7.3.2 Causes of Edema
- **Increased hydrostatic pressure:** Exemplified by CHF
 - Right heart failure: *Peripheral edema*
 - Left heart failure: *Pulmonary edema*
- **Decreased oncotic pressure:** Secondary to hypoalbuminemia
 - Oncotic protein loss in *nephrotic syndrome*
 - Decreased albumin (oncotic protein) production with *cirrhosis of the liver and liver failure*
- **Increased capillary permeability:** Secondary to inflammation or injury to capillary endothelium
Chapter 4 • Hemodynamics

8 Shock

Shock results when reduced perfusion of tissue results in impaired oxygenation of tissue. The types of shock are defined by their cause: hypovolemic, cardiogenic, and septic.

8.1 Hypovolemic Shock
Hypovolemic shock results from excessive loss of fluid (dehydration) or blood (hemorrhage).
- Cold, clammy skin
- Hypotension, weak pulse

8.2 Cardiogenic Shock
- Pump failure with circulatory collapse
- Hypotension, weak pulse, cool skin
- Changes in Fick equation parameters

Changes in Fick equation parameters:

First, this happens

\[CO = \frac{\dot{V}O_2}{[A - V] O_2 \text{ difference}} \]

Finally, as the situation worsens, this happens

Then this happens as CO falls

- \(\dot{V}O_2 \) falls because tissues begin switching to anaerobic metabolism
- Changes in Fick equation parameters are used to guide therapy

▲ Figure 4-8.1 Fick Equation
8.3 Septic Shock

Septic shock results from the multiplication of microbes (usually gram-negative bacteria) in the circulation.

- *Endotoxin* from gram-negative bacilli activates macrophages by binding to CD14
- This activates a cytokine cascade, the complement and kinin systems, and causes direct toxic injury to vessels
- Hypotension, weak pulse, and warm skin due to peripheral vasodilation

![Figure 4-8.3 Septic Shock]

8.4 Irreversible Shock

Irreversible shock results in multiple-organ damage:

- Kidney: Acute tubular necrosis, causing renal insufficiency
- Brain: Focal necrosis
- Liver: Centrilobular necrosis of liver, causing hepatic insufficiency
- Colon: Mucosal hemorrhages
- Lungs: Edema, causing respiratory compromise

<table>
<thead>
<tr>
<th>Table 4-8.4 Shock Differentials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Hypovolemic</td>
</tr>
<tr>
<td>Cardiogenic</td>
</tr>
<tr>
<td>Endotoxic</td>
</tr>
</tbody>
</table>
1 Types of Neoplasms

Neoplasia refers to new growth that is not reversible. It may arise from dysplasia, the reversible condition of disordered growth. Neoplasms may be benign or malignant.

1.1 Characteristics of Benign and Malignant Neoplasms

Table 5–1.1 Benign vs. Malignant Neoplasms

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Benign</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monoclonal origin</td>
<td>Monoclonal origin</td>
<td></td>
</tr>
<tr>
<td>Small size</td>
<td>Variable size</td>
<td></td>
</tr>
<tr>
<td>Slow-growing</td>
<td>Variable growth rate</td>
<td></td>
</tr>
<tr>
<td>Well-demarcated borders</td>
<td>Invasive into adjacent tissues</td>
<td></td>
</tr>
<tr>
<td>Well-differentiated cells</td>
<td>Variable differentiation of cells, pleomorphism</td>
<td></td>
</tr>
<tr>
<td>Nuclear/cytoplasmic ratio near normal; normal mitotic spindles</td>
<td>Increased nuclear/cytoplasmic ratio, often atypical mitoses, prominent nucleoli, up-regulated telomerase activity</td>
<td></td>
</tr>
</tbody>
</table>

1.2 Naming Tumors

Table 5–1.2 Names for Benign and Malignant Neoplasms

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Benign</th>
<th>Malignant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelium</td>
<td>Adenoma, papilloma</td>
<td>Adenocarcinoma, papillary carcinoma</td>
</tr>
<tr>
<td>Mesenchyme</td>
<td>Fibroma, lipoma</td>
<td>Sarcoma</td>
</tr>
<tr>
<td>Melanocytes</td>
<td>Nevus</td>
<td>Melanoma</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td></td>
<td>Lymphoma</td>
</tr>
</tbody>
</table>
1.3 Benign Tumors

1.3.1 Benign Tumors of Epithelial Origin
- Arise from ectoderm or endoderm
- Example: Tubular adenoma arising from glands in the colon (adenomatous polyp)

1.3.2 Benign Tumors of Connective Tissue
- Arise from mesoderm
- Example: Lipoma from adipose tissue

1.3.3 Other Benign Tumor-Like Conditions

Teratoma
- Tumors that derive from more than one germ-cell layer
- Derived from ectoderm, endoderm, or mesoderm
- Calcifications on x-ray
- Tend to be located toward the midline: Ovary/testis, anterior mediastinum, pineal gland, sacrococcygeal in children

Figure 5–1.3A Tubular Adenoma

Figure 5–1.3B Teratoma
Hamartoma
- A disorganized mixture of cells and tissue indigenous to a particular site
- Not neoplastic
- Common sites: Bronchial (detected on x-ray), Peutz-Jeghers polyp

Choristoma (Heterotopic Rest)
- Non-neoplastic tissue in an ectopic site
- Examples:
 - Pancreatic tissue in the stomach wall
 - Parietal cells in Meckel diverticulum

1.4 Malignant Neoplasms

1.4.1 Carcinomas
These forms of cancer are ectodermal or endodermal in origin.
- Squamous Cell Carcinoma
 - Stratified squamous epithelial carcinoma. Commonly found on the skin, mouth, esophagus, or vagina.
 - Also found in areas of squamous metaplasia, including the bronchi and squamocolumnar junction of the uterine cervix.
- Adenocarcinoma
 - Glandular epithelial carcinoma. Commonly occur in mucosa of GI track, pancreas, breast, prostate, and uterine endometrium.
 - Adenocarcinomas may induce reactive proliferation of non-neoplastic fibrous connective tissue, a process called desmoplasia.
 - Transitional cell carcinoma.

1.4.2 Sarcomas

<table>
<thead>
<tr>
<th>Table 5–1.4 Sarcomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
</tr>
<tr>
<td>Osteosarcoma</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
</tr>
<tr>
<td>Chondrosarcoma</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
</tr>
<tr>
<td>Liposarcoma</td>
</tr>
<tr>
<td>Lymphosarcoma</td>
</tr>
<tr>
<td>Hemangiosarcoma</td>
</tr>
</tbody>
</table>
Mechanisms of Carcinogenesis

For tumorigenesis to occur, there is the necessity for nonlethal genetic damage. Tumors arise by clonal expansion of a single genetically damaged precursor cell (they are monoclonal). Mistakes made in DNA replication are normally corrected by DNA repair genes. Tumorigenesis occurs as a multistep process. Four classes of normal regulatory genes are often damaged:

- DNA repair genes
- Growth-promoting oncogenes
- Growth-inhibiting tumor suppressor genes
- Apoptosis-regulating genes

![Figure 5-2.0 Carcinogenesis](image-url)
2.1 Acquired DNA Damaging Agents

2.1.1 Chemicals

Table 5–2.1A DNA Damaging Chemicals

<table>
<thead>
<tr>
<th>Chemical Exposure</th>
<th>Associated Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrosamines (smoked meat products)</td>
<td>Gastric adenocarcinoma</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Bronchogenic carcinoma, mesotheliomas</td>
</tr>
<tr>
<td>Nickel, uranium, chromium</td>
<td>Lung carcinoma</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Squamous cell carcinoma of skin and lung, angiosarcoma of liver</td>
</tr>
<tr>
<td>Aflatoxin B1 (Aspergillus infection)</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>Vinyl chloride and polyvinyl chloride (plastics)</td>
<td>Angiosarcoma of liver</td>
</tr>
<tr>
<td>Alkylating agents (cancer chemotherapy)</td>
<td>Leukemia, lymphoma</td>
</tr>
<tr>
<td>Aniline dyes, aromatic amines, (\beta)-naphthylamine</td>
<td>Transitional cell bladder cancer</td>
</tr>
<tr>
<td>Thorotrast (contrast medium in radiology in 1940s)</td>
<td>Hepatic hemangiosarcoma (angiosarcoma)</td>
</tr>
</tbody>
</table>

2.1.2 Physical Injury
- Third-Degree Burns: Squamous cell carcinoma
- Chronically Draining Sinuses: Squamous cell carcinoma

2.1.3 Ultraviolet Radiation (UVB)
- Produces pyrimidine dimers in DNA, leading to transcriptional errors and mutations of oncogenes and tumor suppressor genes.
- Nucleotide excision repair pathway is "knocked out."

2.1.4 Ionizing Radiation

Table 5–2.1B Radiation and Associated Cancers

<table>
<thead>
<tr>
<th>Source</th>
<th>Associated Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic blast and nuclear radiation</td>
<td>Leukemias, thyroid cancer, etc.</td>
</tr>
<tr>
<td>Uranium mining</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>Radium exposure</td>
<td>Osteosarcoma</td>
</tr>
<tr>
<td>Radiology</td>
<td>Skin cancer, myeloid leukemias</td>
</tr>
</tbody>
</table>
2.1.5 Viruses

DNA Viruses
- **Human Papillomavirus**
 - Cervical carcinoma
 - *HPV 16 and 18* responsible for 70% of cervical cancers
 - *HPV 6 and 11* are "low risk" viruses
- **EBV**: Infects B cells and epithelial cells of nasopharynx via CD21
 - Burkitt lymphoma
 - B cell lymphomas in immunocompromised patients
 - Hodgkin lymphoma
 - Nasopharyngeal carcinomas
- **Hepatitis B**: Hepatocellular carcinoma

RNA Viruses
- **Human T-Cell Leukemia Virus Type-1**: Infects CD4+ T-cells to produce T-cell leukemia/lymphoma
- **Hepatitis C Virus**: Hepatocellular carcinoma

2.2 Activation of Oncogenes

- Growth-promoting oncogenes (*protooncogenes*) are normal cellular genes that promote growth and cellular differentiation.
- Oncogenes are derived from protooncogenes, but are not regulated. They result in unregulated cell proliferation.

2.2.1 Mechanisms of Oncogene Activation

- **Point Mutations** (e.g., ras)
- **Chromosomal Translocations**
 - **t(8;14)** Burkitt lymphoma: c-myc on 8 translocated to IgH on 14
 - **t(9;22)** Chronic myeloid leukemia: c-abl on 9 translocated to bcr on 22 forming bcr-abl (*Philadelphia chromosome*)
- **Gene Amplification**: *N-myc* linked to neuroblastoma

![Figure 5-2.2A Chromosomal Translocation]
2.2.2 Oncogenes Affecting Growth Factors and Associated Receptors

Normal cells require growth factors produced by neighboring cells to induce proliferation (paracrine stimulation). Many cancer cells acquire the ability to synthesize the growth factors to which they will ultimately respond (autocrine stimulation). Some oncogenes encode mutated growth factor receptors that remain constitutively dimerized and activated without binding to the growth factor. This delivers a constant mitogenic signal to the cell in the absence of growth factor stimulation.

Table 5–2A Oncogenes Affecting Growth Factors

<table>
<thead>
<tr>
<th>Protooncogene</th>
<th>Growth Factor</th>
<th>Associated Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIS</td>
<td>PDGF-β</td>
<td>Astrocytoma, osteosarcoma</td>
</tr>
<tr>
<td>TGFA</td>
<td>TGF-α</td>
<td>Astrocytomas, hepatocellular carcinomas</td>
</tr>
<tr>
<td>Growth Factor Receptors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERBB1, ERBB2</td>
<td>EGF-receptor family</td>
<td>Squamous cell carcinoma of lung, gliomas</td>
</tr>
<tr>
<td>RET</td>
<td>Receptor for neurotropic factors</td>
<td>Leukemia, multiple endocrine neoplasia 2A and 2B, familial medullary thyroid carcinomas</td>
</tr>
<tr>
<td>PDGFRB</td>
<td>PDGF receptor</td>
<td>Gliomas, leukemia</td>
</tr>
</tbody>
</table>

![Figure 5–2.2B Mechanism of RAS Carcinogenesis](image-url)
2.2.3 Oncogenes Affecting Signal Transduction or Nuclear Regulatory Proteins

Table 5-2.2B Oncogenes Affecting Signal Transduction

<table>
<thead>
<tr>
<th>Protooncogene</th>
<th>Protein</th>
<th>Associated Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Transduction Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS</td>
<td>GTP-binding</td>
<td>Colon, lung, pancreatic tumors</td>
</tr>
<tr>
<td>HRAS</td>
<td>GTP-binding</td>
<td>Bladder and kidney tumors</td>
</tr>
<tr>
<td>NRAS</td>
<td>GTP-binding</td>
<td>Melanomas, leukemias</td>
</tr>
<tr>
<td>ABL</td>
<td>Non-receptor tyrosine kinase</td>
<td>Chronic myelogenous leukemia, acute lymphoblastic leukemia</td>
</tr>
<tr>
<td>BRAF</td>
<td>RAS signal transduction</td>
<td>Melanomas</td>
</tr>
<tr>
<td>β-catenin</td>
<td>WNT signal transduction</td>
<td>Hepatoblastomas, hepatocellular carcinoma</td>
</tr>
<tr>
<td>Nuclear-Regulatory Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-MYC</td>
<td>Transcriptional activators</td>
<td>Burkitt lymphoma</td>
</tr>
<tr>
<td>N-MYC</td>
<td>Transcriptional activators</td>
<td>Neuroblastoma, small cell carcinoma of lung</td>
</tr>
<tr>
<td>L-MYC</td>
<td>Transcriptional activators</td>
<td>Small cell carcinoma of lung</td>
</tr>
</tbody>
</table>

2.2.4 Oncogenes Affecting Cell Cycle Regulation

Table 5-2.2C Oncogenes Affecting Cell Cycle Regulation

<table>
<thead>
<tr>
<th>Protooncogene</th>
<th>Protein</th>
<th>Associated Tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclin D</td>
<td>Cyclins</td>
<td>Mantle cell lymphoma, breast and esophageal cancers</td>
</tr>
<tr>
<td>Cyclin E</td>
<td></td>
<td>Breast cancer</td>
</tr>
<tr>
<td>CDK4</td>
<td>Cyclin-dependent kinase</td>
<td>Glioblastoma, melanoma, sarcoma</td>
</tr>
</tbody>
</table>
Figure 5.2.2C Oncogenesis

- **Extracellular Growth Signal**
 - EBNA activates Cyclin D
 - Tax gene activates Cyclin D-CDK4 complex
 - Fox gene of p16INK4a activates Cyclin A

- **DNA Damage by Irradiation**
 - p53
 - Activation of E2F responsive genes via phosphorylation and deactivation of RB

- **Activation of E2F responsive genes via phosphorylation and deactivation of RB**
 - Cyclin E
 - CDK2
 - Cyclin A

- **G1/S Checkpoint**
 - p27

- **G2/M Checkpoint**

- **Cell cycle**

- **CDK = Cyclin-Dependent Kinase**
Retinoblastoma

Retinoblastoma occurs in both inherited and sporadic forms. In the inherited form, the individual inherits one defective copy of the RB gene from a carrier parent and the "second hit" occurs via mutation in the retina. In the sporadic form, the individual inherits two normal copies of the RB gene and both become inactivated by somatic cell mutation. The RB protein is a nuclear phosphoprotein that plays a crucial role in the enforcement of G1, the gap between mitosis (M) and DNA replication (S) phases of the cell cycle.

2.3 Inactivation of Tumor Suppressor Genes

While oncogenes promote the proliferation of cells, tumor suppressor genes apply brakes to cellular proliferation. With tumor suppressor genes, both copies of the gene must be inactivated for the result of oncogenesis.

- First hit: Inherited germline or inherited somatic mutation.
- Second hit: Acquired somatic mutation.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>Tumors of Somatic Mutations</th>
<th>Tumors of Inherited Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1</td>
<td>Cell cycle regulation</td>
<td>Retinoblastoma, osteosarcoma, carcinomas of breast, colon, lung</td>
<td>Retinoblastoma, osteosarcoma</td>
</tr>
<tr>
<td>P53</td>
<td>Cell cycle arrest for DNA repair</td>
<td>Most human cancers</td>
<td>Li-Fraumeni syndrome, multiple carcinomas and sarcomas</td>
</tr>
<tr>
<td>WT1</td>
<td>Nuclear transcription</td>
<td>Wilms tumor</td>
<td>Wilms tumor</td>
</tr>
<tr>
<td>P16/INK4a</td>
<td>Inhibition of CDKs</td>
<td>Pancreatic, breast, esophageal cancers</td>
<td>Malignant melanoma</td>
</tr>
<tr>
<td>BRCA1 and 2</td>
<td>DNA repair</td>
<td>Unknown</td>
<td>Carcinomas of breast and ovary</td>
</tr>
</tbody>
</table>
Clinical Application

Wilms Tumor

This childhood renal disease is commonly found with the "constellation" of signs and symptoms at the time of presentation. The inactivation of the WT1 tumor-suppressor gene initiates these signs and symptoms, which are covered by the acronym WAGR:

W = Wilms Tumor which is where WT1 (not WT2), specifically, plays role
A = Aniridia
G = Genitourinary anomalies
R = Mental Retardation/intellectual disability

Do not confuse the WAGR acronym with another childhood constellation of presenting symptoms, VATER (or more precisely VACTERL)

V = Vertebral abnormalities
A = Anal atresia
C = Cardiovascular anomalies
TE = Tracheo-Esophageal fistula
R = Renal abnormalities (not to be confused with Wilms tumor)
L = Limb defects (most commonly the radial bone of the arm)

Clinical Application

Familial Adenomatous Polyposis

This condition has an approximately 100% transformation rate into colorectal cancer. It is caused by a mutation in the adenomatous polyposis coli (APC) gene, which normally controls the activity rate of β-catenin associated transcription. When the transmembrane growth receptor WNT is stimulated by certain carcinogenic growth factors, the regulation of APC is lost and β-catenin is allowed to run amuck. The resulting overstimulation of DNA may cause unregulated cellular proliferation and thus widespread polyp formation, which in turn increases the risk of malignant transformation.

▲ Figure 5-2.3B Pathogenesis of Familial Adenomatous Polyposis
2.4 Dysregulation of Apoptosis
In addition to the action of oncogenes and inactivation of tumor suppressor genes, accumulation of neoplastic cells may result from mutations in the genes that regulate apoptosis. In the intrinsic pathway of apoptosis, which is stimulated by stress and injury, mitochondrial membrane permeability is controlled by a balance of pro-apoptotic and anti-apoptotic members of the BCL2 family of proteins.
- BAX and BAK proteins: pro-apoptotic
- BCL2 and BCL-XL: anti-apoptotic
- BH3-only proteins (BAD, BID, PUMA) regulate the balance between pro- and anti-apoptotic signals
- BH3-only proteins sense death-inducing stimuli and promote apoptosis by neutralizing the actions of BCL2 and BCL-XL

2.5 Limitless Clonal Expansion

2.5.1 Telomerase
Normal cells are capable of 60 to 70 doublings, after which the progressive shortening of telomeres at the ends of chromosomes seem to be recognized by DNA-repair machinery as breaks that necessitate cell cycle arrest. Telomerase maintenance is observed in virtually all malignant cells, so this normal cellular aging is not observed, and cancer cells are, therefore, immortal.

2.5.2 Angiogenesis
Tumors are unable to grow beyond 1-2 mm in diameter unless they are supplied with oxygen and nutrients by neoangiogenesis. This provides the necessary perfusion of supplies and nutrients, provides the secretion of growth factors, and provides access to the vasculature necessary for metastasis.

2.6 Escape From Immune Destruction
- Immunosurveillance should destroy neoplastic cells via recognition of "nonself" antigens.
- Both humoral and cell-mediated immune responses should play a role.
- Tumors mount "countermeasures" to evade the immune response.
- Patients with immune system dysfunction have an increased number of neoplasms.

2.7 Tumor Progression
Each cancer must result from the accumulation of multiple (on average 90) mutations. These mutations to oncogenes, tumor suppressor genes, and anti-apoptotic signals must accumulate incrementally over time. This is demonstrated in the progression of the development of colon carcinoma, through easily identifiable states of epithelial hyperplasia to formation of adenomas which ultimately undergo malignant transformation.
2.8 Invasion and Metastasis

2.8.1 Invasion
- Loss of intercellular adherence.
- Cell invasion takes place:
 - Cell receptors attach to laminin in basement membrane.
 - Cells release type IV collagenase, which dissolves the basement membrane.
 - Cell receptors attach to fibronectin in the extracellular matrix.
 - Cells produce cytokines to stimulate locomotion and proteases to dissolve connective tissue.
 - Cells produce factors that stimulate angiogenesis (vascular endothelial growth factor and basic fibroblast growth factor).

2.8.2 Metastasis
- Requires malignant cells to detach from tumor, be transported in blood or lymphatics to distant sites, and survive (multiply) in new location.
 - **Sarcomas** tend to spread *hematogenously*.
 - **Carcinomas** spread initially via lymphatics.
- **Seeding:** Malignant cells exfoliate from a surface and implant and invade tissue in a body cavity.
 - Primary surface-derived ovarian cancers (serous cystadenocarcinoma) commonly seeds the omentum.
 - Peripherally located lung cancers commonly seed the parietal and visceral pleura.
 - Glioblastoma multiforme commonly seeds the cerebrospinal fluid, causing spread to the brain and spinal cord.

![Figure 5-2.8A Metastasis](image-url)
Bone Metastasis

- The most common site is the vertebra site through the Batson paravertebral plexus.
- Osteoblastic activity will result in bone-building activity and raising levels of alkaline phosphatase (ALP).
- Osteolytic activity will result in lytic bone lesions with increased serum levels of calcium.

▲ Figure 5-2.8B Radiograph of Metastasis
3.1 Adults

Table 5-3.1 Cancer Incidence and Mortality in Adults

<table>
<thead>
<tr>
<th>Gender</th>
<th>Type</th>
<th>Incidence</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Prostate</td>
<td>29%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td>14%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td>Colorectal</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Female</td>
<td>Breast</td>
<td>30%</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td>14%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>Colorectal</td>
<td>11%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Uterine corpus</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Ovarian</td>
<td>3%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>Cervical</td>
<td>0.7%</td>
<td>2%</td>
</tr>
</tbody>
</table>

3.2 Children

In the U.S., from one to two children develop cancer each year for each 10,000 in the population. Of these, more than 50% of the new cases are leukemias (acute lymphoblastic leukemia is most common) and cancers of the brain and central nervous system (gliomas and medulloblastomas are most common).
4 Diagnosis of Cancer

4.1 Types of Monoclonal Isoenzymes

- **Human Androgen Receptor Gene (HUMARA):** This is the most common marker used to determine monoclonality. It examines methylation patterns.
- **Glucose-6-Phosphate Dehydrogenase (G6PD):** The use of this monoclonal isoenzyme for cancer detection is limited to females of African heritage.

4.2 Serum Tumor Markers

<table>
<thead>
<tr>
<th>Molecular Marker</th>
<th>Associated Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-fetoprotein</td>
<td>Hepatocellular carcinoma, yolk sac</td>
</tr>
<tr>
<td>Bence Jones protein</td>
<td>Multiple myeloma, Waldenström</td>
</tr>
<tr>
<td>Ca-125</td>
<td>Surface-derived ovarian</td>
</tr>
<tr>
<td>Carcinoembryonic antigen</td>
<td>Colorectal, pancreatic</td>
</tr>
<tr>
<td>Prostate-specific antigen</td>
<td>Prostate</td>
</tr>
</tbody>
</table>

4.3 Immunohistochemistry

<table>
<thead>
<tr>
<th>Identifying Molecule</th>
<th>Cancer Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokeratin</td>
<td>Epithelial cells</td>
</tr>
<tr>
<td>Desmin</td>
<td>Muscle cells</td>
</tr>
<tr>
<td>Vimentin</td>
<td>Mesenchymal cells</td>
</tr>
<tr>
<td>Actin</td>
<td>Smooth and skeletal muscle</td>
</tr>
<tr>
<td>CD markers</td>
<td>Hematopoietic cells</td>
</tr>
<tr>
<td>Estrogen receptors</td>
<td>Breast</td>
</tr>
<tr>
<td>S100</td>
<td>Melanoma and neural tumors</td>
</tr>
<tr>
<td>Thyroglobulin</td>
<td>Thyroid</td>
</tr>
</tbody>
</table>

4.4 Staging Cancer

Staging is more significant than grading when it comes to determining prognosis of a cancer. The reason falls back on the understanding that when unrestricted cellular proliferation starts invading deeper into the tissue and encroaches the basement membrane, it is then rendered susceptible to rupture. If such an event takes place, malignant cells gain access to the preferred route of metastasis (e.g., sarcoma = hematogenous; carcinoma = lymphatics). Once a cancer has reached the level of metastasis, the prognosis of the condition drops significantly (e.g., breast cancer metastasizing to the axillary lymph nodes; prostate cancer metastasizing to the vertebrae).

© DeVry/Becker Educational Development Corp. All rights reserved.
5 Paraneoplastic Syndromes

5.1 Paraneoplastic Syndromes

Table 5-5.1 Paraneoplastic Syndromes

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Associated Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthosis nigricans</td>
<td>Gastric adenocarcinoma</td>
</tr>
<tr>
<td>Lambert-Eaton syndrome</td>
<td>Small cell carcinoma of lung</td>
</tr>
<tr>
<td>Hypertrophic osteoarthropathy (HOA)</td>
<td>Bronchogenic carcinoma</td>
</tr>
<tr>
<td>NBTE</td>
<td>Mucus-secreting pancreatic/colorectal carcinomas</td>
</tr>
<tr>
<td>Seborrheic keratosis (Leser-Trélat sign)</td>
<td>Gastric adenocarcinoma</td>
</tr>
<tr>
<td>Superficial migratory thrombophlebitis</td>
<td>Pancreatic carcinoma</td>
</tr>
</tbody>
</table>

5.2 Paraneoplastic Endocrinopathies

Table 5-5.2 Paraneoplastic Endocrinopathies

<table>
<thead>
<tr>
<th>Disease</th>
<th>Cell Type</th>
<th>Hormone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cushing</td>
<td>Small cell carcinoma of the lung</td>
<td>ACTH</td>
</tr>
<tr>
<td>Gynecomastia</td>
<td>Choriocarcinoma</td>
<td>hCG</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td>Renal cell, squamous cell carcinoma of the lung</td>
<td>PTH-related peptide</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>Medullary carcinoma</td>
<td>Calcitonin</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>Small cell carcinoma of the lung</td>
<td>ADH</td>
</tr>
<tr>
<td>Polycythemia</td>
<td>Renal cell, hepatocellular carcinoma</td>
<td>Epo</td>
</tr>
</tbody>
</table>
6 Cancer Prevention

6.1 Lifestyle Modification
- Cessation of smoking and alcohol
- Increased intake of fiber
- Weight loss
- Avoidance of environmental carcinogens

6.2 Vaccination
- Hepatitis B virus (HBV) vaccine decreases the risk of hepatocellular carcinoma.
- Human Papillomavirus (HPV) vaccine decreases the risk of cervical cancer.

6.3 Screening
- Pap smear
- Colonoscopy
- Mammography
- Prostate-specific antigen

6.4 Preemptive Treatment for Precursor Conditions
- Treatment for regimen for *Helicobacter pylori* may prevent malignancies such as mucosa-associated lymphoid tissue cancers.
- Treatment for gastroesophageal reflux disease (GERD) may prevent the development of adenocarcinoma of the distal esophagus.
Hematology
1 Red Blood Cells

1.1 Mature Red Blood Cells
Mature red blood cells do not contain mitochondria or HLA. The biochemical pathways that mature red blood cells contain include:
- The only source of energy derived from anaerobic glycolysis
- Pentose phosphate pathway
- Methemoglobin reductase pathway
- Synthesis of 2,3-Bisphosphoglycerate (BPG)

1.2 Red Blood Cell Labs

1.2.1 Blood Counts

Hemoglobin (Hgb) Concentration of hemoglobin in blood.
- Normal Adult Female Range: 12–16 g/dL
- Normal Adult Male Range: 14–18 g/dL

Hematocrit (Hct) Percentage of RBCs by volume.
- Normal Adult Female Range: 37%–47%
- Normal Adult Male Range: 40%–54%

RBC Count Number of RBCs per unit volume.
- Normal Adult Female Range: 3.9–5.2 mill/mcL
- Normal Adult Male Range: 4.2–5.6 mill/mcL

1.2.2 Red Cell Indices

Mean Corpuscular Volume (MCV) Average volume of individual RBCs.
- <80 mm³ = Microcytic
- 80–100 mm³ = Normocytic
- >100 mm³ = Macrocytic

Red Blood Cell Distribution Width (RDW) Reflects variability in red cell size (anisocytosis).

Mean Corpuscular Hemoglobin Concentration (MCHC) Increased when RBCs are misshapen (spherocytosis—lack of a pale center microscopically).
- Average hemoglobin concentration per RBC
- Normal Adult Range: 27–33 pg
- Decreased: Hypochromic
- Normal: Normochromic
- Increased: Hyperchromic
1.3 Red Blood Cell Life Cycle

RBC conception begins in the bone marrow with the help of erythropoietin being supplied from the renals. This is a six-to seven-day process that leads to the development of the reticulocyte, which then enters the circulation.

- **Reticulocyte**: Immature RBC that requires 24 hours to mature upon entry into circulation. The quantity of immature RBCs in the bone marrow reflects the degree of production.

- **Reticulocyte Count**: Percentage of RBCs that are reticulocytes
 - Corrected reticulocyte count corrects for degree of anemia
 - Corrected count = count x (Hct/45)
 - >3% = effective erythropoiesis
 - <3% = ineffective erythropoiesis

The lifespan of an RBC is 120 days, after which it is referred to as senescent RBC and is discarded through the reticuloendothelial system (RES), which mainly includes the spleen, but also the liver and lymph nodes.

Connection to Immunology

Hematopoietic Stem Cell Development

In the bone marrow, a pluripotent stem cell differentiates down one of two lineages in the presence of specific cytokines or soluble mediators. The common myeloid progenitor is created in the presence of granulocyte-monocyte colony stimulating factor (GM-CSF) or interleukin-3 (IL-3). This cell is the originator of erythrocytes, platelets, granulocytes (neutrophils, basophils, and eosinophils), monocytes, macrophages, and dendritic cells. The common lymphoid progenitor is created in the presence of interleukin-7 (IL-7). This cell ultimately differentiates into B lymphocytes, T lymphocytes, or natural killer (NK) cells. The T lymphocyte precursor leaves the bone marrow and migrates to the second primary lymphoid organ, the thymus, to undergo further differentiation into helper T cells (Th) or cytotoxic T cells (Tc).

Expressing reticulocytes as percentage may falsely increase true reticulocyte count.

Figure 6-1.3B Inaccurate Estimate of Reticulocytosis
Clinical Application

Reticulocytosis

- Reticulocytosis refers to 6% of the peripheral blood smear being populated by reticulocytes, which seems to be effective on the surface, but because it is anemia, one must take the patient's hematocrit into consideration and adjust the erythropoiesis accordingly.

- HCT/45 × COUNT
- e.g. HCT 15%, COUNT 6%
- 15/45 × 6 = 2%

Clinical Application

Accelerated Erythropoiesis

- Sickle cell disease or Cooley anemia (β-thalassemia major).
- The body must compensate and thus normally unresponsive sources of erythropoiesis are recruited.
- Radiographs of skull show "hair-on-end" appearance.

▲ Figure 6–1.3C Erythropoiesis: Hair-on-End Appearance
Anemia is the reduction in oxygen-carrying capacity of the blood. It represents the decrease in total number of RBCs, hemoglobin, or circulating RBC mass. Anemia is usually reflected in decreased hemoglobin and hematocrit, in which case the RBC count may be increased, decreased, or normal.

2.1 Classification of Anemia

To remember anemias, use the mnemonic MAD:
- Membrane-defect anemias:
 - PNH
 - Hereditary spherocytosis
- Abnormal hemoglobin anemias:
 - Sickle cell disease
 - HbC disease
- Deficiency of enzyme anemias:
 - G6PD deficiency
 - Pyruvate kinase deficiency
2.1.1 Normal Red Blood Count Labs

Normal RBC labs required to diagnosis various forms of anemia include:

- **Serum Iron**: The iron levels found upon a blood draw.
- **Ferritin**: The serum iron is then stored in ferritin that is made by macrophages and located in bone marrow.
- **Transferrin**: When bodily demands for iron are increased, it is transported to the target tissue in the bound form only. This transport mechanism is known as transferrin, and is synthesized by the liver. Clinically, this is known as total iron binding capacity S(TIBC).
- **Transferrin Saturation**: The percentage of iron that is occupying transferrin.

![Figure 6-2.1B Normal Iron Labs](image)
Microcytic anemias result from problems with hemoglobin synthesis. The two types are:

1. **Defective Heme Synthesis**: Iron deficiency anemia, anemia of chronic disease, and sideroblastic anemia.

2. **Defective Globin Synthesis**: α-thalassemia and β-thalassemia.

3.1 Defective Heme Synthesis

3.1.1 Iron Deficiency Anemia

Etiologies
- **Chronic blood loss, depleting iron stores**
 - GI bleeding—ulcer, diverticulosis, colon cancer
 - GYN bleeding—menorrhagia
- **Dietary deficiency**
 - Very young and very old
 - Associated with ascorbic acid deficiency (vitamin C)
- **Malabsorption**
 - Decreased gastric acid secretion (achlorhydria)
 - Small bowel resection

Decreased Functional Iron Sequence of events leading to decreased hemoglobin:
- Decreased serum iron
- Decreased ferritin
- Increased TIBC
- Decreased saturation

Signs and Symptoms
- Most commonly weakness, pallor, tachycardia
- Glossitis, koilonychia (spooning of nails)
- Chronic iron deficiency may cause pica (an appetite for non-nutritive substances such as dirt)
Plummer-Vinson Syndrome
- Caused by chronic iron deficiency
- Esophageal web form causing dysphagia for solid foods (not liquids)
- Associated with achlorhydria, glossitis, koilonychia

3.1.2 Anemia of Chronic Disease
This form of anemia is most common in hospitalized patients. Its causes range from infection, autoimmune conditions (rheumatoid arthritis), cancer, renal disease, and alcohol abuse. In such cases, the most important diagnostic tool in establishing the cause of such anemia will be a good clinical history.

Pathogenesis
- Chronic inflammation causes sequestration of iron in bone marrow macrophages.
- This effect seems to be mediated by IL-1.
- Hepcidin is a hepatic peptide released secondary to inflammation that blocks the transfer of iron from macrophages within the bone marrow to transferrin.

Clinical Features
- Laboratory findings:
 - Mildly decreased Hgb (usually not <9 mg/dL) and Hct
 - RBCs usually normocytic to mildly microcytic
 - RDW is normal to slightly increased
- Main distinguishing features between iron deficiency anemia and anemia of chronic disease include:
 - Increased iron storage in bone marrow (ferritin)
 - Reduced total iron-binding capacity

![Figure 6-3.1D Glossitis Seen With Iron-Deficiency Anemia](image1)

![Figure 6-3.1E Anemia of Chronic Disease: Laboratory Findings](image2)
3.1.3 Sideroblastic Anemia

Decreased heme synthesis, which may be caused by any number of reasons, results in increased levels of iron.

- **Sideroblast**: Erythroblast containing granules of iron.
- **Ringed Sideroblast**: Nucleated erythroblast containing perinuclear iron granules in its cytoplasm.

Etiology
- Alcohol abuse (most common cause)
- Lead poisoning
- Pyridoxine (vitamin B6) deficiency
- Myelodysplastic syndrome

Porphyrias
These are conditions of defective heme synthesis that lead to the accumulation of heme precursors. Lead inhibits specific enzymes needed in heme synthesis, leading to a similar condition.

![Nucleated RBC in Bone Marrow](image)

Figure 6-3.1F Porphyria Pathway
Pathogenesis Alcohol abuse, lead poisoning, and pyridoxine (vitamin B6) deficiency all inhibit mitochondrial heme synthesis via different mechanisms:

- **Alcohol**: The mitochondrial membrane plays a pivotal role in the proper functioning of the porphyria pathway, necessary for heme synthesis. Chronic ethanol exposure acts as mitochondrial membrane poison and thus interrupts heme synthesis, resulting in the most common cause of sideroblastic anemia.

- **Lead Poisoning**
 - Most common in children 1 to 5 years old.
 - Lead may be found in car radiators, battery factories, paint used in homes before 1978 (exfoliated as paint chips), and pottery.
 - Causes basophilic stippling of RBC.
 - Associated with learning disabilities and growth retardation in children.
 - In addition to disrupting heme synthesis, it also causes:
 - Abdominal pain
 - Encephalopathy
 - Peripheral neuropathy in adults
Pyridoxine (Vitamin B6) Deficiency:

- **Clinical Pathology**
 - B6 is a cofactor for δ-aminolevulinic acid synthase, a rate-limiting step in heme synthesis.
 - Isoniazid (INH) in TB treatment competes with pyridoxine and can lead to B6 deficiency.
 - Vitamin B6 deficiency also causes peripheral neuropathy.

- **Lab Findings**
 - Increased serum iron
 - Increased ferritin
 - Decreased TIBC
 - Increased transferrin saturation

- **Bone Marrow Smear**: Show ringed sideroblasts

Figures

- **Figure 6-3.1H** Ringed Sideroblasts
- **Figure 6-3.1I** Basophilic Stippling
- **Figure 6-3.1J** Iron Overload: Sideroblastic Anemia
3.2 Defective Globin Synthesis

Thalassemias are caused by gene mutations leading to decreased production of globin protein.

3.2.1 α-Thalassemia

■ Deletions of α-globin genes cause α-thalassemia.
■ There are two α-globin genes closely linked on chromosome 16.
■ Total of four alleles.

Etiology Characteristics and severity of the disease depend on the number of genes deleted.

■ Table 6-3.2A α-Thalassemia Genotype Expression

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Genotype</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silent carrier</td>
<td>-α / αα</td>
<td>Asymptomatic</td>
</tr>
<tr>
<td>α-Thalassemia trait</td>
<td>-α / αα</td>
<td>Asymptomatic, with mild anemia</td>
</tr>
<tr>
<td></td>
<td>-α / -α</td>
<td>Intermediate to severe chronic anemia</td>
</tr>
<tr>
<td>HbH disease</td>
<td>-α / -α</td>
<td>Lethal in utero or neonatal</td>
</tr>
<tr>
<td>Hydrops fetalis</td>
<td>-α / -α</td>
<td>Lethal in utero or neonatal</td>
</tr>
</tbody>
</table>

Pathogenesis

■ α-Thalassemia trait:
 ■ Most common thalassemia in patients of Southeast Asia.
 ■ Two inheritance patterns observed based on ethnic descent:
 — Asian (-- allele) descent
 — African (-α allele) descent

■ There are two consequences of 3-deletion α-globin deficiency:
 ■ Quantitative imbalance between α- and β-globin proteins resulting in the formation of insoluble 4β-globin-\(HbH\) or 4γ-globin-\(Hb Barts\) aggregates in the RBC.
 ■ These RBCs are often cleared in the spleen and liver, worsening the anemia.

Clinical Pathology

■ HbH Disease
 ■ Signs and symptoms of anemia.
 ■ Chronic hemolysis with variable jaundice and cholelithiasis (bilirubin stones).
 ■ Extramedullary hematopoiesis with frontal bossing and hepatosplenomegaly.

■ Hydrops Fetalis
 ■ Anasarca (generalized edema) from high-output heart failure.
 ■ Hepatosplenomegaly.
 ■ Causes death in the prenatal period.

Memory Aid

Mnemonic for α-Thalassemia (Hemoglobin Barts) disease:
'4-gamma rays are affecting Bart.'
Laboratory Studies
- Decreased Hgb, Hct, MCV.
- Often an increased RBC count, RDW.
- HbH on hemoglobin electrophoresis.
- Iron studies normal.

![Figure 6-3.2B α-Thalassemia Trait](image)

3.2.2 β-Thalassemia

Etiology and Epidemiology
Found in African, Italian, and Greek populations:
- There is only one β-globin gene on chromosome 11.
- Total of two alleles (α-thalassemia has issues with four alleles).
- β-thalassemia is primarily caused by splicing mutation for minor and nonsense mutation (stop codon) for major.
- There are two types of mutations in the β-globin gene:
 - $β^+$ mutations: Variable decreased expression.
 - $β^o$ mutations: Absent expression.

![Figure 6-3.2C Splicing Patterns](image)

<table>
<thead>
<tr>
<th>Table 6-3.2B β-Thalassemia Genotype Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syndrome</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Thalassemia minor</td>
</tr>
<tr>
<td>Thalassemia intermedia</td>
</tr>
<tr>
<td>Thalassemia major aka Cooley anemia</td>
</tr>
</tbody>
</table>
Pathogenesis Similar to α-thalassemia.

Morphology Similar to α-thalassemia with erythroblastosis, anisopoikilocytosis, and target cells.

Clinical Pathology β-thalassemia major (Cooley anemia):
- Causes severe transfusion-dependent anemia that develops at a few months of age (as HbF declines).
- If adequately transfused, children will develop normally, but will develop secondary hemochromatosis and die of heart disease in their 20s.
- If not transfused, there is stunted growth, bony changes, and high-output heart failure with death in infancy.

Laboratory Findings
- Decreased Hgb, Hct, and MCV
- Often an increased RBC count
- Hemoglobin electrophoresis varies depending on the severity of the disease:
 - Decreased HbA
 - Increased HbF (α2γ2)
 - Increased HbA2 (α2β2)

Newborns: Splenic macrophages phagocytose and destroy RBCs with HbF and replace with HbA and HbA2; takes a few months.

[Figure 6-3.2D Peripheral Blood Smear]

Anemia, but no change in percentage of Hb A, A2, or F (all of them need α-globin chains for their synthesis).

[Figure 6-3.2F α-Thalassemia Trait]
3.3 Summary of Microcytic Anemias

▼Table 6–3.3 Microcytic Anemias

<table>
<thead>
<tr>
<th>Test</th>
<th>Iron Deficiency Anemia</th>
<th>Anemia of Chronic Disease</th>
<th>Thalasemia</th>
<th>Sideroblastic Anemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC Count</td>
<td>↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>MCV</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>RDW</td>
<td>↑</td>
<td>N</td>
<td>N↑</td>
<td>N</td>
</tr>
<tr>
<td>Ferritin</td>
<td>↓</td>
<td>N↑</td>
<td>N</td>
<td>↑</td>
</tr>
<tr>
<td>Serum Iron</td>
<td>↓</td>
<td>↓</td>
<td>N</td>
<td>↑</td>
</tr>
<tr>
<td>TIBC</td>
<td>↑</td>
<td>↓</td>
<td>N</td>
<td>↓</td>
</tr>
<tr>
<td>Tf Saturation</td>
<td>↓</td>
<td>↓</td>
<td>N</td>
<td>↑</td>
</tr>
</tbody>
</table>
Chapter 6 • Red Blood Cell Pathology

4 Macrocytic Anemias

The most common causes of macrocytic anemia are vitamin B12 deficiency and folate deficiency.
- Vitamin B12 and folate are required for multiple steps in DNA synthesis.
- Vitamin B12 and folate deficiencies cause defects in DNA synthesis and cell division.

4.1 Vitamin B12
Steps of vitamin B12 metabolism:
1. Consumption of vitamin B12 in meat products.
2. Vitamin B12 binds to R factor in saliva, which protects it from acid destruction.
3. Gastric acid converts pepsinogen to pepsin, which frees vitamin B12 from ingested proteins.
4. Parietal cells (body/fundus) synthesize intrinsic factor (IF).
5. Pancreatic enzymes cleave off R factor in duodenum, allowing vitamin B12 to form complex with IF.
7. Vitamin B12 binds to transcobalamin II and is delivered to liver, marrow, and actively dividing cells.

4.2 Folate
Steps of folic acid metabolism:
1. Consumption of folic acid in green vegetables and meat products.
2. Polyglutamate converted to monoglutamate by intestinal conjugase in jejunum.
3. Monoglutamate reabsorbed in jejunum.
Table 6-4.2 Folic Acid Deficiency

<table>
<thead>
<tr>
<th>Type</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants and elderly</td>
<td></td>
</tr>
<tr>
<td>Malnutrition</td>
<td></td>
</tr>
<tr>
<td>Chronic alcoholism</td>
<td></td>
</tr>
<tr>
<td>Consumption of goat's milk</td>
<td></td>
</tr>
<tr>
<td>Malabsorption</td>
<td>Celiac disease</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td></td>
</tr>
<tr>
<td>Drug inhibition</td>
<td>Methotrexate, TMP</td>
</tr>
<tr>
<td>Phenytin</td>
<td></td>
</tr>
<tr>
<td>OCP, alcohol</td>
<td></td>
</tr>
<tr>
<td>Increased use</td>
<td>Pregnancy/lactation</td>
</tr>
<tr>
<td>Disseminated malignancy</td>
<td></td>
</tr>
<tr>
<td>Severe hemolytic anemia</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-4.2 Biochemical Pathways of Folate and Vitamin B12
4.3 Clinical Features

- **Combined Folate and Vitamin B12 Deficiency:**
 - Signs and symptoms of anemia
 - May present with glossitis
- **Folate Deficiency:** May present as neural tube defects in neonate
- **Vitamin B12 Deficiency:**
 - Causes peripheral neuropathy with sensorimotor dysfunction
 - Subacute combined degeneration (demyelination) of spinal cord
 - Demyelination of the posterior columns (loss of vibratory sensation and proprioception)
 - Demyelination of dorsal spinocerebellar tract (ataxia and wide-based gait)
 - Lateral corticospinal tract of the spinal cord (spasticity)
- **Laboratory Findings:**
 - *Decreased* Hgb and Hct
 - *Increased* MCV and RDW
 - Hypersegmented neutrophils
 - Folate deficiency
 - Decreased serum and RBC folate
 - Increased homocysteine
 - B12 deficiency
 - Decreased serum B12
 - Increased serum homocysteine and methylmalonic acid

Table 6-4.3 Clinical Features and Laboratory Findings

<table>
<thead>
<tr>
<th>Finding</th>
<th>Pernicious Anemia</th>
<th>Other Vitamin B12 Deficiencies</th>
<th>Folate Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achlorhydia</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Autoantibodies</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Chronic atrophic gastritis</td>
<td>Present</td>
<td>Absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Gastric carcinoma risk</td>
<td>Increased</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Hypersegmented neutrophils</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Mean corpuscular volume</td>
<td>Increased</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>Present</td>
<td>Present</td>
<td>None</td>
</tr>
<tr>
<td>Pancytopenia</td>
<td>Present</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Plasma homocysteine</td>
<td>Increased</td>
<td>Increased</td>
<td>Increased</td>
</tr>
<tr>
<td>Serum gastrin level</td>
<td>Increased</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Urine methylmalonic acid</td>
<td>Increased</td>
<td>Increased</td>
<td>Normal</td>
</tr>
</tbody>
</table>

© DeVry/Becker Educational Development Corp. All rights reserved.
4.4 Schilling Test

Now rarely used, the Schilling test is sometimes performed because of its historical significance in demonstrating the impairment of vitamin B12 reabsorption.

- Administration of radioactive vitamin B12 combined with intrinsic factor (IF) followed by a 24-hour urine collection to measure excreted B12.
- Pernicious anemia diagnosed if increased levels of radioactive vitamin B12 are found in urine.

![Figure 6-4.4 Schilling Test](image)

4.5 Treatment

- **Folate Deficiency**: Treated with oral folic acid supplements and suggestions for improved diet. Symptoms resolve with treatment.
- **Vitamin B12 Deficiency**: Treated with supplemental intramuscular injections. However, the neurologic manifestation (subacute combined degeneration) is irreversible if left untreated for too long.

Important Concept

If a negligent doctor only prescribes folate supplements for megaloblastic anemia caused by vitamin B12 deficiency, neurological deterioration will persist to the point of irreversibility.
5.1 Overview of Normocytic Anemia

Normocytic anemias are the largest classification of anemias. This type of anemia refers to a red blood cell appearing normochromic (normal MCHC) and normocytic (normal MCV). Globally, the hemoglobin levels are decreased, and the reticulocyte count is altered. This alteration of the reticulocyte count is the true determinant of the various categories of normocytic anemia. The category of normocytic anemia with corrected reticulocyte count is less than 3% and primarily due to bone marrow failure; these are considered nonhemolytic anemias. If the corrected reticulocyte count is found to be greater than 3%, these anemias are considered to be hemolytic, and fall under either intravascular or extravascular damage, as will be discussed below.

![Figure 6-5.1 Normocytic Anemias](image)

5.2 Nonhemolytic Anemia

5.2.1 Classification

- Corrected reticulocyte count <3% (acute blood loss of less than a week)
- Decreased RBC production (no reticulocytosis):
 - Aplastic anemia (bone marrow failure)
 - Anemia of renal disease (insufficient erythropoietin)
 - Myelophththic anemia (bone marrow destruction due to metastasis into bone marrow from a primary cancer)
Chapter 6 • Red Blood Cell Pathology

5.2.2 Acute Blood Loss

- **Major causes:**
 - Trauma
 - GI bleeding: Ulcer, varices, diverticuli

- No anemia initially as plasma is lost with RBCs; when a whole blood compartment gets smaller, it loses its ability to dilute and thus does not initially show signs of anemia.

- Plasma is replaced first by retaining volume in the kidneys; this reveals the anemia by diluting the RBCs.

- Bone marrow takes five to seven days to respond with reticulocytosis.

5.2.3 Bone Marrow Failure

- **Aplastic Anemia**
 - Pancytopenia
 - Normocytic anemia without reticulocytosis
 - Leukopenia: Susceptibility to infection
 - Thrombocytopenia: Bleeding diathesis
 - Etiology of aplastic anemia:
 - Idiopathic/autoimmune most common
 - Drugs (chloramphenicol, chemotherapy)
 - Infection (EBV, CMV, parvovirus B19)
 - Congenital (Diamond-Blackfan syndrome, Fanconi anemia)

- **Anemia of Renal Failure:** Caused by decreased production of erythropoietin by the kidneys.

- **Myelophthisic Anemia:** Replacement of bone marrow by space-occupying lesions:
 - Leukemia or metastatic cancer
 - Fibrosis: Chronic idiopathic myelofibrosis

▲ Figure 6–5.2A Corrected Reticulocyte Count

© DeVry/Becker Educational Development Corp. All rights reserved.
5.3 Hemolytic Normocytic Anemia

These anemias are caused by intrinsic or extrinsic defects:

- **Intrinsic Defects**: These are part of the RBC itself—structural proteins, enzymes, membrane defects, etc.
- **Extrinsic Defects**: These are outside of the RBC—mechanical destruction, autoimmune destruction, etc.

Hemolytic anemias can also be classified by site of RBC destruction:

- **Intravascular Hemolysis**: Hemolysis occurs in the circulation. Hemoglobinuria results in decrease in haptoglobin and increase in LDH. Haptoglobin complexed with Hb is removed by macrophages (the amount of UCB is usually not high enough to produce jaundice).
- **Extravascular Hemolysis**: RBCs are removed from circulation by the reticuloendothelial system (macrophages in the liver and spleen) and destroyed.

Figure 6-5.3A Extravascular Hemolysis

- Unconjugated bilirubin = Jaundice
- Lactate dehydrogenase (nonspecific)
5.3.1 Clinical Features
- Hemoglobinemia/hemoglobinuria
- Jaundice
- Decreased serum haptoglobin
- Increased serum LDH
- Cholelithiasis with bilirubin stones
- Hepatosplenomegaly
- Corrected reticulocyte count ≥3%

5.3.2 Hereditary Spherocytosis
- Intrinsic
- Extravascular

Etiology Autosomal dominant disorder of RBC membrane proteins that maintain the integrity of the cell membranes. These include spectrin and ankyrin.

Pathogenesis
- Loss of membrane fragments causes the RBCs to assume a spherical, rather than biconcave, shape.
- The spherocytes are small, round, and thus MCHC is increased.
- Damage to the Na⁺/K⁺ ATPase pump from the mutation results in increased osmotic pressure within the cell.

Clinical Pathology
- Because spherocytes are destined for extravascular hemolysis, splenomegaly is observed.
- *Aplastic crisis* with *parovirus B19* infection is due to decreased RBC life span.

Diagnosis
- Diagnosed with *osmotic fragility test* (increased hemolysis in hypotonic solution).
- Coombs negative (i.e., no antibodies on RBCs).

Memory Aid
To remember the intrinsic RBC defects that cause hemolytic anemia, use the mnemonic **MAD**:
- Membrane defects
- Abnormal hemoglobin
- Deficiency of enzymes
5.3.3 Paroxysmal Nocturnal Hemoglobinuria

- Intrinsic
- Intravascular

Etiology Clonal deficiency in glycosyl phosphatidyl inositol (GPI)-linked proteins on RBCs, neutrophils, and platelets.

Pathophysiology One of the GPI-linked proteins is decay-accelerating factor (DAF), which neutralizes complement attached to RBCs, neutrophils, and platelets. In the absence of this protein, RBCs are susceptible to complement-mediated intravascular hemolysis.

Clinical Pathology
- Causes episodic (paroxysmal) hemolysis when complement is activated by mild acidosis.
- Respiratory acidosis during sleep (nocturnal).
- Lactic acidosis during exercise.
- Over time, can lead to iron deficiency from chronic blood loss.

Diagnosis
- Lysis of RBCs in sucrose (sucrose lysis test) or acid (Ham test).
- Flow cytometry to detect GPI-linked proteins.

5.3.4 Sickle Cell Disease

- Intrinsic
- Extravascular

Etiology
- Sickle cell disease is an autosomal recessive genetic disorder caused by a missense mutation (GAG → GTG) at the second nucleotide of the sixth codon in the HBB gene on chromosome 11, which results in a glutamic acid → valine substitution (E6V) in the β-globin subunit of hemoglobin.

- The significance of Hemoglobin C along with Hemoglobin S → HbSC is that sickle cell disease may also be caused by coinheritance of the E6V HBB gene mutation with another HBB gene mutation, as follows:
 - E6V HBB gene mutation + is a missense mutation, which results in a glutamic acid → lysine substitution (E6K) in the HBB gene forming HbC.
 - The result is the coexistence of both E6V HbS and E6K HbC within red blood cells (HbSC).

[Figure 6-5.3D Sickling of Red Blood Cell]
Pathogenesis

- *Deoxyhemoglobin S* has a tendency to polymerize.
- Polymerization causes sickling of RBCs under conditions of low oxygen tension:
 - Infection
 - Dehydration
 - Hypoxia
- Sickled cells:
 - Are cleared in the spleen causing hemolytic anemia.
 - Block the microvasculature causing vaso-occlusion.

Clinical Pathology

- Vaso-occlusion can lead to pain crises (microvascular ischemia):
 - 100% of SS patients are eventually addicted to opiates.
 - Dactylitis—Inflammation and pain of the digits due to ischemia.
- Acute chest syndrome: Hypoxemia caused by microvascular disease of the lung.
- Autosplenectomy: Involution of the spleen causing susceptibility to infection by encapsulated bacteria (100% of SS patients autosplenectomized by adulthood).
- Stroke.
- Painful priapism.
- Also susceptible to:
 - Aplastic crisis with parvovirus B19 infection.
 - *Salmonella* osteomyelitis.
 - Other sequelae of chronic hemolytic anemia.

Diagnosis

- Peripheral blood smear:
 - Target cells are a nonspecific finding (i.e., found in thalassemias) and represent any sign of hemoglobinopathy.
 - Sickled cells: RBCs take on a sickled configuration, and when these accumulate in smaller tributaries, they cause ischemia to the distal target tissue.
 - Howell-Jolly bodies are inclusions found in RBCs that represent the first sign of splenic dysfunction. Their presence leaves the patient with increased risk of infection from encapsulated organisms:
 - *Streptococcus pneumoniae*
 - *Neisseria meningitides*
 - *Klebsiella pneumoniae*
 - *Haemophilus influenzae*
 - *Salmonella typhi*
 - *Cryptococcus neoformans*
 - *Pseudomonas aeruginosa*
- Newborn screening: Genetic test for E6V mutation.
- Sickle prep: Peripheral blood sickles when exposed to sodium metabisulfite (reduces oxygen tension).
- Hemoglobin electrophoresis.

Some Nasty Killers Have Slime Capsules for Protection:

- *Streptococcus pneumoniae*
- *Neisseria meningitides*
- *Klebsiella pneumoniae*
- *Haemophilus influenzae*
- *Salmonella typhi*
- *Cryptococcus neoformans*
- *Pseudomonas aeruginosa*
5.3.5 Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency

- **Intrinsic**
- Intravascular is the most common manifestation; however, extravascular hemolysis may also take place.

Epidemiology
- Mostly seen in African population where the severity is mild.
- Severe forms are seen in Greeks and Italians.

Etiology
- X-linked recessive inheritance pattern is the most common presentation.
- Mutation in glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting step in the pentose phosphate shunt; the mutation decreases the half-life of the enzyme ($t_{1/2}=13$ days, normal 62).
- Agents that provide oxidant stress:
 - Infections — Nitrofurantoin
 - Oxidizing drugs:
 - Primaquine
 - Dapsone
 - Chloroquine
 - Sulfonamides
 - Fava beans

Pathophysiology
- The pentose phosphate shunt is the only source of NADPH in RBCs.
- NADPH is required for recycling of glutathione.
- Reduced glutathione, the plentiful form of glutathione with NADPH, acts as an antioxidant. NADPH is synthesized in the pentose phosphate shunt with the help of G6PD.
- G6PD deficiency leads to oxidative damage, including hemoglobin precipitation (*Heinz bodies*) and membrane damage (*bite cells*).
- *Heinz bodies* = denatured hemoglobin.
- *Bite cells* = RBCs with membrane damage, partially consumed by macrophages.
- The damaged RBCs are destined to be cleared by the spleen if the damage is incomplete (*bite cells*). If the macrophages aggressively attack RBCs due to presence of *Heinz bodies*, and phagocytosis is complete, then this form of hemolysis is intravascular.
Clinical Features

Clinical phases of G6PD deficiencies:
- With acute hemolysis, a Heinz body prep is performed, not an enzyme assay.
- Post-hemolysis will show decreased levels of enzyme.
- Causes episodic hemolytic anemia (pallor, fatigue, jaundice) with oxidative stressors.
- May present with hemolytic anemia concomitantly with recurring Staphylococci infections due to decreased supplies of NADPH.

5.3.6 Pyruvate Kinase Deficiency

Intrinsic
Extravascular

Etiology Caused by genetic mutations that decrease the activity of pyruvate kinase, the last enzyme in glycolysis.

Pathogenesis
- The RBC has only glycolysis to generate energy (no mitochondria).
- In pyruvate kinase deficiency, therefore, there is little ATP or NADH production.
- ATP deficiency affects the Na⁺/K⁺ ATPase, leading to osmotic instability and misshapen RBCs that are cleared in the spleen.
- NADH deficiency decreases the reducing power required to convert methemoglobin (Hbg-Fe³⁺) to hemoglobin (Fe²⁺).
- Because of the distal block, 2,3-BPG is increased.
- 2,3-BPG binds to hemoglobin and alters its conformation (allosteric inhibition), shifting the oxygen saturation curve to the right.
Morphology Damage to red blood cell membrane causes spiculated RBCs.

Clinical Pathology
- Usually diagnosed in childhood as a chronic hemolytic anemia.
- Serum methemoglobin is elevated.
- Although pyruvate kinase deficiency (PKD) is the most common of the glycolysis errors, it is still a very rare disease.

5.3.7 Microangiopathic Hemolytic Anemia
- Extrinsic
- Intravascular

Etiology Mechanical damage to RBCs:
- Mechanical or stenotic heart valves (Waring blender effect).
- Concomitant iron deficiency anemia may be present, indicating replacement of the valve.
- Malignant hypertension.
- Diffuse microthrombus formation (fibrin and/or platelets):
 - Disseminated intravascular coagulation (DIC).
 - Thrombotic thrombocytopenic purpura (TTP).
 - Hemolytic uremic syndrome (HUS).

Pathogenesis RBCs are "sheared" by encountering vascular defects in circulation.

Morphology Schistocytes on peripheral smear.

5.3.8 Autoimmune Hemolytic Anemia
There are two types of this anemia:
- Warm autoimmune hemolytic anemia (WAIHA)
- Cold autoimmune hemolytic anemia (CAIHA)

Warm Autoimmune Hemolytic Anemia (WAIHA)
- Extrinsic
- Extravascular

Etiology Most cases are idiopathic. Warm (IgG) antibodies are associated with:
- Autoimmune diseases (especially SLE).
- Chronic lymphocytic leukemia (CLL).
- Drugs causing IgG coating:
 - Through the process of adsorption of penicillin on the membrane.
 - α-Methyldopa disrupts the red blood cell membrane so drastically that it renders it foreign to the host’s immune system.
Pathogenesis
- Warm-reacting (37°C) IgG autoantibodies formed against RBC surface antigens.
- Coated antibodies are cleared in the spleen.
- Extravascular type of hemolysis.
- Microspherocytes generated when splenic macrophages remove part of antibody-coated membrane.
- Nearly impossible to differentiate from hereditary spherocytosis on a smear alone.

Clinical Features
- Signs and symptoms of hemolytic anemia.
- Diagnosed by direct Coombs test.
- Anti-IgG immune globulin is mixed with patient RBCs and incubated at 37°C.
- If the cells agglutinate, this indicates the presence of IgG coating the RBC membrane.
- For transfusions, all blood will have a positive cross-match, so the transfusions are all labeled "incompatible."

Cold Autoimmune Hemolytic Anemia (CAIHA)
- Extrinsic
- Intravascular

Etiology
- CAIHA often follows a viral infection, especially Mycoplasma pneumonia.
- Class Ia antiarrhythmic agent, such as quinidine, forms an immune complex with IgM.

Pathogenesis
- Mediated by IgM autoantibodies.
- These antibodies bind RBCs in cold extremities.
- Antibody binding causes complement fixation.
- As the complex travels to warmer parts of the body complement is activated and RBCs hemolyze (intravascular hemolysis).
Clinical Pathology
- Diagnosis is made by identifying cold-reacting (1°C–4°C) antibodies by direct Coombs test.
- Cold autoantibodies are fairly common and transient.
- It is uncommon for them to cause serious clinical consequences.

Clinical Application

Using Coombs Test to Diagnose Autoimmune Hemolytic Anemia:
- **Direct Coombs test**
 - Incubate patient RBCs with anti-IgG or IgM (Coombs reagent)
 - If RBCs agglutinate → positive
 - IgG = "warm"
 - IgM = "cold"
- **Indirect Coombs test**
 - Maternal prenatal testing
 - Prior to a blood transfusion
 - Detects unbound anti-RBC antibodies that are in the patient's serum
 - Patient serum is incubated with RBCs of known antigenicity
 - Agglutination → positive

5.3.9 Malaria
- Extrinsic
- Intravascular

Etiology
- Female *Anopheles* mosquito transmits *Plasmodia* to humans
- Intraerythrocytic parasite causes intravascular hemolysis
- Occurrence of intravascular hemolysis correlates with fever spikes

Pathogenesis
- *Plasmodium vivax*
 - Most common
 - Tertian fever every 48 hours
 - Duffy (Fy) antigen on RBCs is the binding site
- *Plasmodium falciparum*
 - Most lethal
 - Quotidian daily fever spikes with no pattern
- *Plasmodium malariae*
 - Association with nephrotic syndrome
 - Quartan fever pattern every 72 hours
Chapter 6 • Red Blood Cell Pathology

Myelofibrosis

Excess fibrosis in the bone marrow damages red blood cells by squeezing them through "narrowed" passages.

- A mutation of JAK2 myeloid stem cell results in extramedullary hematopoiesis with neoplastic hematopoietic cells present in the spleen.
- The development of massive splenomegaly commonly causes splenic infarcts.
- Peripheral blood smear present with the following:
 - Tear drop cells due to squeezing of the remaining red blood cells through the fibrosed bone marrow.
 - Immature white blood cells and nucleated red blood cells (NRBCs).
Polycythemia is an excess of red blood cells in the blood.

7.1 Etiology

- **Primary:** Neoplastic, independent of erythropoietin (polycythemia vera)
- **Secondary:** Due to increased erythropoietin
 - Chronic hypoxemia (lung disease, congenital heart disease, high altitude)
 - Paraneoplastic syndrome (RCC/HCC)
 - Blood "doping"
- One of the *myeloproliferative disorders*:
 - Essential thrombocythemia (ET)
 - Chronic myelogenous leukemia (CML)

7.2 Pathogenesis

7.2.1 Primary Polycythemia

- Mutation of JAK2 gene on short arm of chromosome 9 of myeloid stem cell results in proliferation in red blood cells, platelets, and white blood cells (except for those of the lymphoid lineage).
- There is a *normalization of SaO₂* with a normal negative feedback effect on *EPO*, which is *decreased*.

7.2.2 Secondary Polycythemia

- Hypoxia for any reason, for example high altitude, results in *decreased SaO₂* and thus an appropriate *increase in EPO*.
- Ectopic production of EPO most commonly from renal cell carcinoma resulting in an *increase in EPO* and *normalization of SaO₂*.

7.3 Laboratory Findings

- Markedly increased RBCs on peripheral smear.
- Increased RBC and myeloid precursors in bone marrow.

7.4 Diagnosis

In figure 6-7.4A, the parameters to take into consideration for proper designation of condition include:

- Plasma volume
- Red Blood Cell mass which is measured as:
 - RBCs mL/kg body wt.
 - RBC count cells/μL
- Percent saturation of oxygen (*SaO₂)*
- Plasma erythropoietin (*EPO*) levels

▲ Figure 6-7.4 Polycythemia
Table 6–7.4 Differentials of Polycythemia

<table>
<thead>
<tr>
<th>Differentials of Polycythemia</th>
<th>Plasma Volume</th>
<th>RBC Mass</th>
<th>(\text{SaO}_2)</th>
<th>EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume depletion (e.g., excessive sweating, secretory diarrhea)</td>
<td>Decreased</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Appropriate absolute (e.g., cyanotic CHD, COPD, high altitude)</td>
<td>Normal</td>
<td>Increased</td>
<td>Decreased</td>
<td>Increased</td>
</tr>
<tr>
<td>Inappropriate absolute: Ectopic EPO (renal cell cancer)</td>
<td>Normal</td>
<td>Increased</td>
<td>Normal</td>
<td>Increased</td>
</tr>
<tr>
<td>Polycythemia vera</td>
<td>Increased</td>
<td>Increased</td>
<td>Normal</td>
<td>Decreased</td>
</tr>
</tbody>
</table>

7.5 Clinical Features

- Increased RBC mass is more viscous and puts patients at risk for thrombosis (stroke, bowel infarction, hepatic vein thrombosis, etc.). This is the most common cause of death in these patients.
- Pruritus after bathing, due to histamine release from mast cells in the skin.

Table 6–7.5 Types of Polycythemia

<table>
<thead>
<tr>
<th>Type</th>
<th>RBCs</th>
<th>WBC</th>
<th>Platelets</th>
<th>Philadelphia Chromosome</th>
<th>JAK2 Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycythemia vera</td>
<td>Increased</td>
<td>Increased</td>
<td>Increased</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Essential thrombocytosis</td>
<td>Unaffected</td>
<td>Unaffected</td>
<td>Increased</td>
<td>Negative</td>
<td>Positive (30%–50%)</td>
</tr>
<tr>
<td>Chronic myelogenous leukemia</td>
<td>Decreased</td>
<td>Increased</td>
<td>Increased</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Myelofibrosis</td>
<td>Decreased</td>
<td>Variable</td>
<td>Variable</td>
<td>Negative</td>
<td>Positive (30%–50%)</td>
</tr>
</tbody>
</table>
Blood Cell Differentiation

Pluripotent hematopoietic stem cell

- Proerythroblast
 - Neutrophilic lineage
 - Eosinophilic lineage
 - Basophilic lineage
 - Reticulocyte
- Myeloblast
 - Neutrophilic lineage
 - Eosinophilic lineage
 - Basophilic lineage
- Megakaryoblast
- Monoblast
- Megakaryocyte
 - Platelets
 - Monocyte
- Lymphoid stem cell
- Promyelocyte
- Myelocyte
- Metamyelocyte
- Stab (band) cell
- Neutrophilic lineage
- Eosinophilic lineage
- Basophilic lineage

WBC differential from highest to lowest:
- Neutrophils
- Lymphocytes
- Monocytes
- Eosinophils
- Basophils
- Neutrophils Like Making Everything Better

Figure 7-1.0 Blood Cell Differentiation

USMLE® Key Concepts

For Step 1, you must be able to:
- Describe the morphology of white blood cells.
- Explain the quantitative disorders of white blood cells, leukocytosis and leukopenia.
- Differentiate acute and chronic leukemias.
2 Review of Morphology

2.1 Types of White Blood Cells

2.2 Peripheral Smear

2.3 Relative Proportions of Leukocytes

- Total WBC count: 4,000–10,000/mm³
- Segmentated neutrophils: 56%
- Lymphocytes: 34%
- Monocytes: 4%
- Bands: 3%
- Eosinophils: 3%
- Basophils: 0.3%
3 Quantitative Disorders

3.1 Leukocytosis

3.1.1 Neutrophilic Leukocytosis

Definition: Elevated WBC count with absolute neutrophil count > 7,000 (NL 2,200–5,600/mm³)

Etiology
- Infection (especially bacterial infection)
- Sterile inflammation with necrosis (for example, myocardial infarction)
- Drugs (most commonly corticosteroids)

Pathogenesis
- Cytokines stimulate:
 - Increased production from bone marrow.
 - Early release—this causes "left shift," such as an increase in immature forms (for example, bands).
- Corticosteroids cause apparent neutrophilia by decreasing adhesion of neutrophils to endothelium (*demargination*).

▲ Figure 7-3.1A Leukoerythroblastic

- Two extreme cases:
 - Leukemoid Reaction
 - Exaggerated response to serious infection (perforating appendicitis, sepsis, etc.).
 - The presentation appears like a leukemia, but it is not. There is no anemia, thrombocytopenia, or blast population.
 - WBC count > 50,000.
 - May involve all cell types.
 - Leukoerythroblastic Reaction
 - It is like having bone marrow cells in the peripheral blood.
 - Increase in immature WBCs, including myeloblasts.
 - Caused by infiltrative bone marrow diseases or multiple fractures.
3.1.2 Lymphocytosis

Definition: Elevated WBC count with absolute lymphocyte count >4,000 (adults) or >8,000 (children).

Etiology
- Infection—especially viral infection, but also bacterial infection
- Chronic inflammation
- Drugs (for example, phenytoin)

Pathogenesis
- Increased production
- Decreased entry into lymph nodes (seen particularly in pertussis)
- Antigenic stimulation and activation of T cells causes them to take on an atypical morphology especially seen in:
 - Infectious mononucleosis (EBV)
 - Virus is found in the saliva and is responsible for exudative and painful lymphadenopathy; tests such as heterophile antibodies in the acute phase (Monospot test) are very sensitive, especially in adolescents and young adults; IgM antibodies against horse, bovine, and sheep RBCs; antiviral capsid antigen (VCA) IgM/IgG is the best screening test; EBNA only positive after a few months.
 - Viral hepatitis
 - Cytomegalovirus (CMV)
 - Toxoplasmosis

![Figure 7-3.1B Atypical Lymphocytes](image)

3.1.3 Eosinophilia
- Allergies/asthma (Type I hypersensitivity reaction)
- Parasitic infections

3.1.4 Basophilia
Myeloproliferative disorder (CML) is an example of where we might see basophilia.

3.1.5 Monocytosis
Infections (EBV, TB, Salmonella, Listeria, syphilis)
3.2 Leukopenia

3.2.1 Neutropenia

- Absolute neutrophil count < 1,500
- Caused by:
 - Ineffective granulopoiesis (MDS, megaloblastic anemia)
 - Bone marrow infiltration (leukemia, metastatic carcinoma, storage diseases, myelofibrosis)
 - Splenic sequestration (blood cells trapped by spleen)
- Drugs that cause neutropenia:
 - Chemotherapeutic drugs
 - Alkylating agents
 - Antimetabolites
 - Chlorpromazine
 - Clozapine
 - Sulfonamides
 - Chloramphenicol

3.2.2 Lymphopenia

- Caused by:
 - HIV infection (CD4)
 - Congenital immunodeficiency (DiGeorge, SCID)
 - Autoimmune disease
 - Cytotoxic drugs (for example, chemotherapy)
 - Glucocorticoids (long term)
 - Malnutrition
Leukemias

- Malignancy of stem cells in bone marrow with widespread metastasis. It is important to understand that malignant lymphomas are malignancies that arise from lymph nodes, with the most common extranodal site being the stomach.
- Leukemias are broken down further by using *age brackets* and percentage of blasts of the condition.

Table 7-4.0 Leukemias

<table>
<thead>
<tr>
<th>Age Bracket</th>
<th>Blasts Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute lymphoblastic leukemia (ALL)</td>
<td>>20% blasts</td>
</tr>
<tr>
<td>• Newborn-14 years of age</td>
<td></td>
</tr>
<tr>
<td>Acute myeloblastic leukemia (AML)</td>
<td>>20% blasts</td>
</tr>
<tr>
<td>• 15-39 years of age</td>
<td></td>
</tr>
<tr>
<td>AML and chronic myelogenous leukemia (CML)</td>
<td><10% blasts</td>
</tr>
<tr>
<td>• 40-60 years of age</td>
<td></td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia (CLL)</td>
<td><10% blasts</td>
</tr>
<tr>
<td>• Greater than 60 years of age</td>
<td></td>
</tr>
<tr>
<td>• Most common overall</td>
<td></td>
</tr>
</tbody>
</table>

![Figure 7-4.0 Classification of Leukemias](image)
4.1 Acute Leukemia

- Disease of neoplastic leukocytes.
- Predominance of immature forms, especially blasts (myeloblasts or lymphoblasts).
- Disease defined by >20% blasts in the bone marrow.
- Symptoms due to marrow failure secondary to leukemia infiltration—pancytopenia—anemia, leukopenia, and thrombocytopenia.
- Can be associated with Philadelphia chromosome t(9;22).
 - This translocation is not only associated with chronic myelogenous leukemia (CML).

Etiology

- Chromosomal abnormalities (for example, Down syndrome)
- Ionizing radiation
- Chemical exposure
- Alkylating agents (chemotherapy)
- Age

4.1.1 Acute Lymphocytic (Lymphoblastic) Leukemia (ALL)

- Disease of immature lymphocyte—pre-B and pre-T ALLs
- Typically seen in children up to age 15
 - No. 1 leukemia in this age group

Pathogenesis

- Most common malignancy in children.
- Defective maturation of lymphocyte precursors.
- Common ALL Antigen (CALLA) + (CD10).
- Terminal deoxynucleotidyl transferase (TdT)+ is the most common type.
- Translocation t(12;21) has good prognosis.
- Can be pre-B or pre-T ALL.
- Can be extramedullary (lymphoblastic lymphoma).
- Metastasizes to CNS, testicles.

▲ Figure 7-4.1A Acute Lymphocytic Leukemia (ALL)
Table 7-4.1 Onset of Leukemias

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Pre-B ALL</th>
<th>Pre-T ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age of Onset</td>
<td>Childhood</td>
<td>Adolescence</td>
</tr>
<tr>
<td>Site</td>
<td>Blood/BM</td>
<td>Mediastinal mass</td>
</tr>
<tr>
<td>WBC Count</td>
<td>Low-normal</td>
<td>High</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Pancytopenia, neurologic symptoms, bone pain</td>
<td></td>
</tr>
</tbody>
</table>

4.1.2 Acute Myeloid Leukemia (AML)

- Disease of immature granulocytes
- Seen in young to middle-aged adults (15–60)

Morphology: Classification (FAB)

- M0—undifferentiated
- M1—AML without maturation
- M2—AML with maturation
- M3—Acute promyelocytic leukemia (APL)
- M4—Myelomonocytic
- M5—Monocytic/monoblastic
- M6—Erythroleukemia
- M7—Megakaryoblastic leukemia

Pathogenesis

- Myelodysplastic syndrome (MDS):
 - May precede AML—"preleukemic" condition
 - Pancytopenia
 - Shift to immaturity in granulocytes, but <20% blasts
 - Dysplasia in one or more lineages
 - Tends to occur in older individuals
 - Especially common in those treated with prior chemotherapy

- Associated with recurrent cytogenetic abnormalities:
 - t(15;17)—acute promyelocytic leukemia (APL)
 - t(8;21)
 - 11q23 abnormalities

- Genetic abnormalities lead to defects in stem cell maturation and clonal expansion of leukemic blasts.
4.1.3 M3—Acute Promyelocytic Leukemia (APL)

Morphology Characterized by abnormal myeloid blasts
- Large nuclei
- Prominent nucleoli
- Cytoplasmic granules with occasional *Auer rods*.
 - Auer rods are needle-shaped azurophilic intracytoplasmic inclusion bodies.
 - These contain peroxidase and lysosomal enzymes, which can stain with antibody against myeloperoxidase (MPO).
 - Upon peripheral blood smear, if you see blasts with Auer rods you know it is some type of acute leukemia.
 - These acute leukemias include myeloblastic, promyelocytic, myelomonocytic, and monocytic.
- Other conditions in which Auer rods are seen are myelodysplastic syndromes (MDS) (RAEB-2) and chronic monomyeloid leukemia.
- Keep in mind that the converse is not true: Just because you *do not* see Auer rods does not mean that the blast is *not* a myeloblast.

![Figure 7-4.1B Acute Myeloid Leukemia (AML)](image)

Clinical Findings
- Symptoms:
 - Weakness, pallor, fatigue (normocytic anemia)
 - Infection susceptibility (leukopenia)
 - Easy bleeding/bruising (thrombocytopenia)
 - Bone pain (marrow infiltration)
- M3 (APL) associated with DIC—can be effectively treated with *all-trans retinoic acid (ATRA)*
4.2 Chronic Leukemia

- Chronic leukemias are derived from more mature leukocytes
- Chronic (mature) leukemias
 - Chronic lymphocytic leukemia
 - Chronic myelogenous leukemia
 - Hairy cell leukemia
 - Adult T-cell leukemia/lymphoma

Pathogenesis
- Neoplasm of maturing peripheral lymphocytes
- May present as concurrent or isolated lymphoma (small lymphocytic lymphoma—SLL)
- Bone marrow is always involved
- Spleen and liver also can be involved

4.2.1 Chronic Lymphocytic Leukemia (CLL)

Pathogenesis
- CLL disrupts normal immune function:
 - Hypogammaglobulinemia and increased infections
 - Autoimmune hemolytic anemia (AIHA)
 - Most commonly associated with "warm" type AIHA
 - Idiopathic thrombocytopenic purpura (ITP)

Clinical Findings
- Usually occurs in older patients, median age of 60.
 - CLL is the most common cause of generalized painless lymphadenopathy.
 - WBC count varies from normal to very high (>100,000).
 - Hypogammaglobulinemia is a common finding.
 - Insidious onset with nonspecific symptoms—fatigue, weight loss, anorexia.
 - Lymphadenopathy and hepatosplenomegaly are often present.
 - Progression is slow—median survival is four to six years, less than one year if disease transforms.
 - Some CLLs transform to more aggressive forms: Prolymphocytic transformation and Richter syndrome—transformation to diffuse large B-cell lymphoma
 - Peripheral blood smear:
 - "Smudge" cells
 - Small, monomorphic lymphocytes with "cracked" chromatin

▲ Figure 7–4.2A Chronic Lymphoid Leukemia
4.2.2 Chronic Myelogenous Leukemia (CML)

Etiology/Pathogenesis

- CML is a neoplastic transformation of pluripotent stem cells for both myeloid and lymphoid series.
- It is the only leukemia that may present with thrombocytosis (40% to 50%).
- CML is defined by the presence of the Philadelphia chromosome \(t(9;22) \); this translocation also may be found in other acute leukemias.
- This results in fusion of the BCR and ABL genes.
- The ABL gene product is a tyrosine kinase that controls cell growth.
- The BCR/ABL fusion protein results in increased, unregulated activity of ABL leading to uncontrolled growth of maturing myeloid cells.

![The Philadelphia Chromosome](image)

Figure 7-4.2B The Philadelphia Chromosome
Chapter 7 • White Blood Cell Pathology

Morphology
- Peripheral blood shows leukocytosis with increased immature granulocytes—myelocytes, metamyelocytes, bands, etc.
- There is an absolute basophilia.
 - Notice the increased number of granules and intense basophilia in the image.

Clinical Findings
- Over 40 years old
- Onset is slow and insidious with nonspecific symptoms
- Symptoms come from:
 - Anemia—weakness, fatigue, pallor, etc.
 - Splenomegaly—abdominal fullness, pain
- Disease slowly progresses over years to:
 - Accelerated phase—failure of treatment and increasing cytopenias
 - Blast crisis—rapid and marked increase in bone marrow or peripheral blood blast count

Treatment
- Chronic phase treated successfully with Gleevec (ABL tyrosine kinase inhibitor)
- Gleevec-resistant disease treated with bone marrow transplant

Table 7-4.2 Indications of Leukemias

	ALL	AML	CML	CLL
Age	Children	Young adults	Middle-aged	Elderly
Onset	Abrupt/acute	Chronic/insidious		
Symptoms	Cytopenias, bone pain	Nonspecific, fatigue, weakness, etc.		
Prognosis	Excellent (two thirds cured)	Moderate (30% cured)	OK with Gleevec; otherwise poor	Poor, but slowly progressing
4.2.3 Hairy Cell Leukemia
- Rare mature B-cell leukemia
 - Hair-like projections due to irregular cytoplasmic membrane on malignant B lymphocytes.
 - Tartrate-resistant acid phosphatase (TRAP) stain used to identify.
- Occurs predominantly in older males.
- Patients present with splenomegaly due to source of blast proliferation.
- Pancytopenia, especially monocytopenia.
- Complications include opportunistic infections and vasculitis.
- Prognosis is good with treatment with purine nucleoside analogs and/or splenectomy.

▲ Figure 7-4.2D Hairy Cell Leukemia

4.2.4 Adult T-Cell Leukemia/Lymphoma (ATLL)
- ATLL is caused by a retrovirus—human T-cell leukemia virus, type 1 (HTLV-1).
- It is primarily found in HTLV-1 endemic areas—Japan, the Caribbean, and central Africa.

Pathogenesis
- Activation of TAX gene, which inhibits the TP53 suppressor gene.
- There is monoclonal proliferation of neoplastic CD4Th cells.

Clinical Findings
- The disease has a long latency, causing leukemia/lymphoma decades after infection.
- Patients may present with generalized lymphadenopathy and hepatosplenomegaly.
- Skin infiltration is commonly involved.
- Lymphoblasts release osteoclastic activating factor, which causes widespread lytic bone lesions, resulting in hypercalcemia.
- Prognosis varies, but is generally poor, with death usually from opportunistic infections.
Lymphoid Pathology Overview

- Lymph nodes
 - Normal lymph node
 - Benign lymphadenopathy
 - Lymphoid neoplasms
- Spleen
- Thymus
- Plasma cell neoplasms

2. Lymph Nodes

2.1 Anatomy: Normal Lymph Node

2.1.1 Sinus: Location of First Site of Metastasis

- Clinical correlate
- Histiocytoses
 - Group of clinical syndromes characterized by an abnormal proliferation of histiocytes capable of migrating from skin to lymph nodes.
 - Clinically, its manifestations range from isolated bone lesions to multisystem disease.
 - Langerhans cell histiocytosis (LCH) is a rare clonal proliferative disorder of dendritic (Langerhans) cells from bone marrow of monocyte lineage.
 - Cells are functionally immature and do not efficiently stimulate T lymphocytes via antigen presentation.
 - Cells express S-100 and CD1a.
 - Electron microscopy: Birbeck granules ("tennis rackets")

Figure 8-2.1A Normal Lymph Node

Figure 8-2.1B Birbeck Granules
—LCH Subtypes:
 • *Eosinophilic granuloma* (unifocal LCH): Benign lytic bone lesions with no extraskeletal involvement.
 • *Hand-Schüller-Christian* (multifocal unisystem): Mostly found in children with a triad of lytic skull lesions, central diabetes insipidus, infiltration of the orbit resulting in exophthalmos.

2.1.2 Germinal Follicles (B Cells)

Site for B cell proliferation

- Clinical correlate
 - Follicular B cell lymphoma and Reed-Sternberg cells from Hodgkin lymphoma originate here.
 - Germinal follicle are absent in Bruton agammaglobulinemia resulting in B cell and, therefore, plasma cell deficiency.

2.1.3 Paracortex (T Cells)

Site of T cell maturation resulting in decreased production of B cells and thus plasma cell deficiency.

- Clinical correlate
 - T cell lymphomas originate here.
 - The paracortex is absent in DiGeorge syndrome.

2.1.4 Severe Combined Immunodeficiency

- SCID is the absence of the enzyme adenine deaminase, which, along with the absence of both the germinal centers and paracortex, impairs proper manufacturing of B and T cells.

2.2 Benign Lymphadenopathy

2.2.1 Acute Nonspecific Lymphadenitis

- Inflammation of lymph nodes characterized by cortical and/or paracortical hyperplasia.
- Usually caused by *acute infections*.
 - Strep/staph most common
 - Cat-scratch disease (*Bartonella*)
 - Tularemia (rabbits)
- Most frequent presentation is *tender enlarged* lymph nodes.
 - Site depends on nature of disease.

2.2.2 Chronic Nonspecific Lymphadenitis

- Usually causes long-standing, *non-tender* lymphadenopathy.
- Etiologies include:
 - Neoplasms
 - Autoimmune disease
 - HIV
 - Chronic infections
 - Drugs

Clinical pearls of lymphadenopathy:
- If the involved lymph nodes are painful, think inflammatory, the most common etiology.
- If the involved lymph nodes are painless, think of either malignancies.

Common lymphadenopathy associations:
- Seminoma spreading to para-aortic nodes.
- Stomach cancer to the left supraclavicular lymph nodes.
2.3 Lymphoid Neoplasms

- **Leukemias** of either acute or chronic types may invade lymph nodes and give rise to a lymphoma type of picture.
 - Leukemias are covered in chapter 7, "White Blood Cell Pathology."
- Hodgkin lymphoma
 - Nodular sclerosis
 - Mixed cellularity
 - Lymphocyte rich
 - Lymphocyte depleted
 - Nodal lymphocyte predominant
- Non-Hodgkin lymphoma
 - Follicular lymphoma
 - Diffuse large B cell lymphoma
 - Burkitt lymphoma
 - Mantle cell (see topic 2.5.2)
 - T cell lymphoma
- Plasma cell neoplasms may invade lymph nodes and give rise to a lymphoma type of picture.

2.4 Hodgkin Lymphoma

- Presents in a single lymph node or several adjacent lymph nodes.
- Is confined to lymph nodes with little extranodal component.
- Spreads in a contiguous fashion (for example, from one node to an adjacent node).
- Consists of a few neoplastic cells (Reed-Sternberg or RS cells) surrounded by many benign reactive cells.
- Reed-Sternberg cells arise from B cell germinal center origin. They are mirror-image nuclei, each with eosinophilic nucleolus surrounded by a clear halo.

<table>
<thead>
<tr>
<th>Table 8-2.4A Ann Arbor Classification of Tumor Staging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
</tbody>
</table>
There are four types of High-Yield morphologies of RS cell to know:

1. **Classic**: Two mirror image nuclei with eosinophilic nucleolus surrounded by a clear halo.

2. **Lacunar**: Pale cell with multilobed nucleus containing many small nucleoli found in sclerosing type Hodgkin disease.

3. **Mononuclear variant**: Single nucleus with prominent nucleolus found in mixed cellularity type Hodgkin disease.

4. **Lymphocytic and Histiocytic (L&H) variant**: Large, pale staining, multilobed cell found in lymphocyte predominant type Hodgkin disease.

Clinical Pathology

- Presents as enlarging lymphadenopathy (usually cervical/supradiavicular) with or without "B" symptoms—fever, weight loss, night sweats.
- Prognosis depends on stage, but is generally good.
- Even stage IV disease has a 60% to 70% five-year survival.
- CD (clusters of differentiation) markers.
- Generally, **CD 15+, 30+, 45—except** lymphocyte predominant form (CD 15-, 30-, 45+).
Table 8-2.4B Characteristics of Subtypes

<table>
<thead>
<tr>
<th>Subtype</th>
<th>Neoplastic Cells</th>
<th>Background Cells</th>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodular sclerosis</td>
<td>Lacunar</td>
<td>Mixed Bands of fibrosis</td>
<td>60%-80% of cases, M=F, anterior mediastinal + either cervical or supra-clavicular lymph nodes</td>
</tr>
<tr>
<td>Mixed cellularity</td>
<td>Mononuclear</td>
<td>Mixed</td>
<td>30% of cases, M(>55 years)>F, HIV common, EBV association</td>
</tr>
<tr>
<td>Lymphocyte rich</td>
<td>Mononuclear</td>
<td>T lymphocytes</td>
<td>Older, M>F, EBV association</td>
</tr>
<tr>
<td>Lymphocyte depleted</td>
<td>Classic RS and</td>
<td>Few, some diffuse fibrosis</td>
<td>Rare, older, HIV</td>
</tr>
<tr>
<td>Nodular lymphocyte predominant (NLPHL)</td>
<td>L&H (popcorn) cells</td>
<td>B cells, Dendritic cells</td>
<td>Uncommon, young, M>F, Cervical, axillary</td>
</tr>
</tbody>
</table>

2.5 Non-Hodgkin Lymphomas (NHLs)

2.5.1 Characteristics of Non-Hodgkin Lymphomas

Non-Hodgkin lymphomas are most commonly of B cell origin. Usually present with:

- Widespread lymphadenopathy.
- "B symptoms"—fever, weight loss, night sweats.
- Spread noncontiguously.
- Often involve extranodal sites.
- Risk factors
 - Viral
 - Epstein-Barr virus (EBV)
 - Human T cell leukemia virus type I—T cell lymphoma or leukemia.
 - Hepatitis C virus
 - *Helicobacter pylori*
 - Autoimmune disease
 - Sjögren syndrome; Hashimoto
 - Immunodeficiency syndromes and immunosuppressive therapy
 - High-dose radiation as in treatment for Hodgkin leukemia
 - NHL CD markers—"clusters of differentiation."
 - Common markers to remember:
 - CD 19, 20—B cell markers
 - CD 3, 5—T cell markers
 - CD 138, kappa, lambda—plasma cell markers

© DeVry/Becker Educational Development Corp. All rights reserved. Chapter 8-5
2.5.2 Most Common Types of Non-Hodgkin Lymphoma (NHL)

- Follicular lymphoma
- Diffuse large B cell lymphoma
- Burkitt lymphoma
- Mantle cell lymphoma
- T cell lymphomas

Follicular Lymphoma

Etiology/Pathogenesis

- Most follicular lymphomas carry a t(14;18) translocation.
- This juxtaposes the BCL2 gene with the immunoglobulin heavy chain gene.
- This causes unregulated expression of BCL2, an inhibitor of apoptosis.
- This causes increased survival of germinal center cells, leading to lymphoma.

Morphology

- Replacement of lymph nodes with enlarged follicles, consisting of small, cleaved lymphocytes.

Clinical Pathology

- Follicular lymphoma is the most common of the NHLs.
- It usually presents in middle age.
- It is fairly indolent with average survival: ~8 years, but not amenable to chemotherapy.
- ~30–50% of follicular lymphomas transform to more aggressive large B cell lymphomas.
- Not equivalent to Richter syndrome.

Diffuse Large B Cell Lymphoma (DLBCL)

Etiology/Pathogenesis

- Most common type of NHL.
- 30% carry t(14;18), indicating transformed follicular lymphoma.
- 20% to 30% carry translocations involving BCL6, a gene involved in regulation of B cell differentiation.
- Diffuse large B cell lymphoma (DLBCL) is common in immunodeficiency states, a result of transformation of lymphocytes due to EBV or HHV-8 infection.
- May be mature T cell in origin of approximately 20% of the time.

Morphology

- Diffuse replacement of lymph node parenchyma with large, pleomorphic cells.
Clinical Pathology
- Most occur in older patients, but has a wide age range, including children.
- Patients usually present with a rapidly enlarging mass at either a nodal or extranodal site.
- Symptoms, if present, are usually due to mass effect or tissue destruction.
- DLBCL is quite aggressive, but usually responds to chemotherapy, with lasting remission seen in ~50% of patients.

Burkitt Lymphoma

Etiology/Pathogenesis
- Endemic and sporadic forms are associated with latent EBV infection.
- Most carry translocations involving the c-myc gene on chromosome 8.
- The most common of these is t(8;14), which juxtaposes the c-myc gene with the immunoglobulin heavy chain gene.
- These translocations lead to unregulated overexpression of c-myc, an oncogene that promotes cell growth and division.

Morphology
- Diffuse infiltrate of medium-sized cells.
- Large numbers of mitotic and apoptotic cells.
- Scattered benign macrophages—"starry sky."

Clinical Pathology
- All forms occur at extranodal sites.
- Burkitt lymphomas tend to appear more frequently in children and young adults, except for the HIV form.
- Three types of Burkitt lymphoma:
 2. Sporadic: Presents as an abdominal mass.
 3. HIV-associated: Very aggressive form.
Table 8-2.5 Hodgkin vs. Non-Hodgkin

<table>
<thead>
<tr>
<th>Hodgkin</th>
<th>Non-Hodgkin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normally localized to a single group of nodes (cervical, mediastinal, para-aortic)</td>
<td>More frequent involvement of multiple peripheral nodes</td>
</tr>
<tr>
<td>Contiguous spread</td>
<td>Noncontiguous spread</td>
</tr>
<tr>
<td>Rarely involve mesenteric nodes or Waldeyer ring</td>
<td>Mesenteric nodes and Waldeyer ring commonly involved</td>
</tr>
<tr>
<td>Extranodal involvement uncommon</td>
<td>Extranodal involvement common</td>
</tr>
</tbody>
</table>

Mantle Cell Lymphoma
- Tends to occur in older males.
- Associated with translocation t(11;14).
- Pathogenesis is the inactivation of cyclin D regulatory gene.
- Poor prognosis with association of CD5+.

T Cell Lymphomas

Adult T Cell Lymphoma/Leukemia

Mycosis Fungoides/Sézary Syndrome
- CD4 T cell lymphoma in adults.
- Begins in the skin as a rash and progresses to plaques and nodular masses.
- Groups of neoplastic cells in skin called Pautrier microabscesses.
- Sézary syndrome: mycosis fungoides with a leukemic phase; circulating cells called Sézary cells.
3.1 Splenomegaly

Etiology
- Passive congestion:
 - Cirrhosis
 - Portal vein thrombosis
 - Heart failure
 - Infiltration
- Lymphoproliferative diseases
- Marginal zone lymphoma
- Storage diseases
- Amyloidosis
- Infection (for example, EBV):
 - In an infectious mononucleosis patient, worry about splenic rupture when there is trauma to the abdomen.
 - Worry about trauma to the abdomen in someone with mono → splenic rupture.

3.2 Hypersplenism
- Congestion of blood in the spleen causes:
 - Sequestration of blood elements.
 - Activation of reticuloendothelial cells.
 - Both processes lead to anemia and thrombocytopenia.
 - In some cases, there is increased risk of traumatic splenic rupture, causing potentially fatal hemoperitoneum.

3.3 Splenic Dysfunction/Autosplenectomy
- Predisposition to infections by encapsulated pathogens.
 - Streptococcus pneumoniae
 - Haemophilus influenzae
 - Salmonella typhi
 - Neisseria meningitidis
- Must immunize patients with splenic dysfunction or splenectomy.
4.1 Congenital Disorders

4.1.1 DiGeorge Syndrome
- Thymic hypoplasia and parathyroid hypoplasia; 22q11 deletion.
 - Abnormal development of the *third and fourth pharyngeal pouches*.
 - Varying degrees of T cell immunodeficiency

4.1.2 Thymic Hyperplasia
- Clinical features of acquired hypogammaglobulinemia are the same in DiGeorge syndrome and thymic hyperplasia.

4.2 Autoimmune Disorders
- *Myasthenia gravis*
- Good syndrome (thymoma + combined immunodeficiency and hypogammaglobulinemia)
- Pure red cell aplasia
- Graves disease
- Pernicious anemia
- Dermatomyositis-polymyositis
- Cushing syndrome
Plasma Cell Neoplasms

- White cell neoplasms that secrete monoclonal immunoglobulin
- Includes:
 - Plasma cell myelomas
 - Plasmacytoma
 - Monoclonal Gammopathy of Undetermined Significance (MGUS)
 - Lymphoplasmacytic lymphoma (Waldenström macroglobulinemia)

5.1 Plasma Cell Myelomas

5.1.1 Plasma Cell Multiple Myeloma

- Characterized by large neoplastic plasma cells derived from B lymphocytes.
- Neoplastic plasma cells produce an osteoclast-activating factor secreted by the neoplastic cells.
- Cause lytic lesions in bone (punched-out lesions), especially in the skull and axial skeleton.

Figure 8-5.1A Multiple Myeloma

- Products secreted:
 - Intact monoclonal immunoglobulin ("M protein") not to be confused with IgM
 - Heavy (mostly IgG and IgA) and light chains (kappa and lambda)
 - Free light chains (Bence Jones protein) spilled into urine
Clinical Pathology
- Seen almost exclusively in patients >50 years old.
- Incidence increases with age.
- Prognosis is poor—median survival is ~3 years with treatment.
- Signs and symptoms from:
 - *Bony infiltration*
 - Chronic pain
 - Pathologic fractures
 - Hypercalcemia
 - *Increased Ig production*
 - Renal failure
 - Amyloid deposition
 - *Impaired immunity*—recurrent infections
 - *Haemophilus influenzae*, strep pneumonia
 - Normocytic anemia with *rouleaux formation*

5.1.2 Plasmacytoma
- Solitary skeletal plasmacytoma
 - Bony plasmacytomas usually eventually progress to plasma cell myeloma within 10 to 20 years.
- Extramedullary (most often in upper respiratory tract)

5.1.3 Monoclonal Gammopathy of Undetermined Significance (MGUS)
- Most common monoclonal gammopathy.
- Serum monoclonal M protein, but no other signs or symptoms of myeloma.
- Found in 1% of people >50 years old, and incidence increases with age.
- Only a small percentage (~1% per year) ever progress to overt myeloma.
5.1.4 Lymphoplasmacytic Lymphoma
(Waldenström Macroglobulinemia)

- B cell neoplasm of cells that are in a developmental stage between
 B lymphocytes and plasma cells.
 - Referred to as plasmacytoid lymphocytes.
- MGUS is a major risk factor.
- Neoplastic B cells secrete monoclonal IgM.
- Elevated serum IgM causes hyperviscosity syndrome:
 - Visual impairment
 - Neurologic problems
 - Bleeding
- Differences compared with multiple myeloma: No lytic lesions;
 does not arise in the bone marrow, but does metastasize to the
 marrow.
ABO Blood Group Antigens

1.1 Blood Group O Characteristics
- Most common blood group
- No blood group antigens are present on the RBC membrane
- Natural antibodies (isoagglutinins) in serum
 - Anti-A IgM, IgG and anti-B IgM, IgG may be present

1.2 Blood Group A Characteristics
- Anti-B IgM antibodies
- Increased incidence of gastric carcinoma

1.3 Blood Group B Characteristics
- Anti-A IgM antibodies

1.4 Blood Group AB Characteristics
- Least common blood group
- No natural antibodies
- Contains A and B antigens

1.5 Paternity Issues in Newborns
- Blood group AB parents cannot have an O child.
- Blood group O parents cannot have an AB, A, or B child.
- AO + BO parents may have an O child.

<table>
<thead>
<tr>
<th>Mother</th>
<th>A</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father</td>
<td>B</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>AO</td>
</tr>
</tbody>
</table>

Figure 9–1.5 Parents' Blood Types

Table 9–1.5 Parental-Fetal Blood Group Combinations With Viability Options

<table>
<thead>
<tr>
<th>AO + BO Parents with</th>
<th>O child</th>
<th>Newborn has greatest chance of viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Parents with</td>
<td>AB, A, B, child</td>
<td>Newborn has the least chance of viability</td>
</tr>
<tr>
<td>A + B Parents with</td>
<td>O child</td>
<td>Newborn is at moderate risk for non-viability</td>
</tr>
</tbody>
</table>
Determining the ABO Group

2.1 Forward Type
- Identifies the blood group antigen.
 - Patient's red blood cells are added to test tubes that contain either anti-A or anti-B test serum.
 - For example, a patient with blood group B red blood cells is added to a test tube containing serum antibodies (anti-B IgM), resulting in agglutination.

2.2 Back Type
- Identifies natural antibodies.
 - Patient's serum is added to test tubes containing either group A or B test red blood cells.
 - For example, a patient with blood group B serum (anti-A IgM) is added to a test tube containing blood group A test red blood cells, resulting in agglutination.

<table>
<thead>
<tr>
<th>Blood group</th>
<th>Forward Type</th>
<th>Back Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-A</td>
<td>Anti-B</td>
</tr>
<tr>
<td>O</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>AB</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

▲ Figure 9–2.2 Determining ABO Group
Rh Antigen and Non-Rh Antigen Systems

3.1 Rh Antigen System
- It has three adjoining gene loci.
 - Locus coding for D antigen; d antigen does not exist.
 - Locus coding for C and c antigen
 - Locus coding for E and e antigen
- Autosomal codominant inheritance
 - One of the sets of three Rh antigens from each parent is transmitted to each child.
 - For example, a child with cDe from the mother and cde from the father results in the child lacking E antigen.

<table>
<thead>
<tr>
<th>Mother</th>
<th>Father</th>
<th>CDe</th>
<th>CDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>cde</td>
<td>cDe</td>
<td>cde/CDe</td>
<td>cde/CDE</td>
</tr>
<tr>
<td>CDE</td>
<td>CDE/cDe</td>
<td>CDE/CDE</td>
<td></td>
</tr>
</tbody>
</table>

▲ Figure 9–3.1 C, D, E Antigens

- An individual who is Rh positive is D antigen positive.
 - Approximately 85% of the population has a D antigen.
 - Those lacking a D antigen are considered Rh negative.
- An example of an Rh phenotype individual would be a patient with C, c, D, E (Rh-positive) antigen who would be negative for e antigen.

3.2 Alloimmunization
Antibodies develop against foreign antigens.
- Production of an antibody against a foreign antigen not present on patient’s red blood cells.
- Examples:
 - If a patient develops antibodies after exposure to Rh antigens, then this patient would be considered Rh-negative.
 - If a patient develops antibodies to non-Rh antigens, the patient is considered to be lacking Kell antigen, for example.
 - These antibodies are called atypical antibodies: The patient is considered to be sensitized if atypical antibodies are present.
What is the significance of atypical antibodies?
- They may lead to hemolytic transfusion reaction (HTR).
- An example of this would be a patient with anti-Kell antibodies who is exposed to Kell antigen positive red blood cells.
- Of the antibodies synthesized, IgG antibodies are more likely to produce HTR than IgM antibodies.
 - IgG antibodies react best in warm temperatures, whereas IgM antibodies react best in cold.
 - Clinical significance of transfusion requirements calls for a protocol to check for atypical antibodies.
 - Transfusion recipients must receive blood that is negative for foreign antigens.
 - For example, a patient with anti-Kell antibodies must receive Kell antigen negative blood.

3.3 Clinically Important Non-Rh Antigens
- Duffy (Fy) antigens
 - Fy antigens are the binding sites for invading organisms such as *Plasmodium vivax* into red blood cells.
 - The African populace lacks the Fy antigen and therefore may be rendered resistant to *P. vivax* infestation.
- I and i antigen systems
 - IgM antibodies, considered to be cold agglutinins, may develop I or i antigens.
 - Examples include anti-i hemolytic anemia in infectious mononucleosis in patients and anti-I hemolytic anemia in patients with *Mycoplasma pneumoniae* infections.
4 Patient Crossmatch

4.1 Components of a Standard Crossmatch
- ABO group and Rh type
- Antibody screen for atypical antibodies
- Direct Coombs test to identify atypical IgG antibodies bound to red blood cells
- Major crossmatch

4.2 Major Crossmatch
- What is the purpose of a major crossmatch?
 - To detect atypical antibodies directed against foreign antigens on donor red blood cells.
- Sample of red blood cells from a donor unit is mixed with the patient's serum.
- Lack of red blood cell agglutination or hemolysis indicates a compatible crossmatch.
- Clinical Pearl: Even though there might be a compatible major crossmatch, this does not guarantee that there will not be a transfusion reaction.
5 Transfusion Reactions

5.1 Allergic Reaction
- The most common transfusion reaction.
- Type I IgE-mediated hypersensitivity reaction against some protein in the donor blood.

5.2 Febrile
- Recipient has anti-human leukocyte antigen (HLA) antibodies directed against HLA antigens on donor leukocytes.
 - Remember: Red blood cells do not have HLA antigens.
- This is an example of a type II hypersensitivity reaction.

5.3 Hemolytic Transfusion Reaction (HTR)
5.3.1 Intravascular Hemolysis: ABO Blood Group Incompatibility
For example, a blood group B recipient received blood group A donor blood, which then elicits a type II hypersensitivity reaction in which the recipient's IgM antibodies will react with the donor's blood group A antigens, resulting in complement activation and rapid intravascular hemolysis.

5.3.2 Extravascular Hemolysis
- For example, atypical antibodies react with foreign antigens on donor's red blood cells
- These atypical antibody-coated red blood cells are then taken to the recipient's spleen for extravascular hemolysis. Jaundice might be noticed in this patient as a typical finding.

5.4 Clinical Presentation and at Risk
- Fever, back pain, hypotension
- Disseminated intravascular coagulation, acute renal failure

5.5 Lab Findings
- Positive Direct (coated RBC)
- Indirect (atypical antibodies)
Hemolytic Disease of the Newborn (HDN)

HDN results from the transplacental passage of maternal IgG antibodies as seen with anti-D antibodies, anti-A and anti-B antibodies in group O mothers resulting in extravascular hemolytic anemia in the fetus.

6.1 ABO HDN

The most common occurrence, presenting in 20% to 25% of pregnancies.

Pathogenesis

- Blood group O mothers have anti-A and anti-B IgG antibodies.
- IgG antibodies will cross transplacentally and coat the fetal red blood cells.
- The fetal spleen will respond by causing extravascular hemolysis, resulting in the release of unconjugated bilirubin.
- This unconjugated bilirubin is eliminated by the mother's liver, thus diminishing the effects of the unconjugated bilirubin damage, mainly to the fetal nervous system (i.e. kernicterus).

Clinical and Lab Findings

- ABO HDN is the most common cause of jaundice in the first 24 hours due to the fact that the fetal liver has not developed a fully operating conjugating mechanism.
- ABO HDN gives a positive direct Coombs test on fetal cord red blood cells.

\[\text{Figure 9-6.1} \text{ ABO HDN}\]
6.2 Rh HDN

Pathogenesis
- Mother is Rh (D antigen) negative and the fetus is Rh positive.
- Fetomaternial exposure, in which the mother will develop anti-D IgG antibodies that will not cause significant harm to the first newborn.
- Subsequent pregnancies under the same conditions will cause demise to the fetus due to maternal pre-formed IgG antibodies.
- The extravascular hemolysis and anemia that ensues results in high-output cardiac failure leading to a condition called hydrops fetalis.
- The degree of jaundice is more pronounced than it is with ABO HDN, and an increased risk for kernicterus also exists.

Prevention
- Administration of anti-D IgG globulin to D-negative mothers with D-positive child at 28th week of pregnancy.
- Given at the time of delivery or termination of pregnancy.
- Causes antibody-mediated removal of fetal red cells from the maternal circulation, preventing maternal alloimmunization.
- Clinical Pearl: ABO HDN protects against Rh HDN.